October  2008, 2(4): 645-700. doi: 10.3934/jmd.2008.2.645

Smooth conjugacy of Anosov diffeomorphisms on higher-dimensional tori

1. 

Department of Mathematics, Pennsylvania State University, University Park, PA, 16802, United States

Received  April 2008 Revised  May 2008 Published  October 2008

Let $L$ be a hyperbolic automorphism of $\mathbb T^d$, $d\ge3$. We study the smooth conjugacy problem in a small $C^1$-neighborhood $\mathcal U$ of $L$.

The main result establishes $C^{1+\nu}$ regularity of the conjugacy between two Anosov systems with the same periodic eigenvalue data. We assume that these systems are $C^1$-close to an irreducible linear hyperbolic automorphism $L$ with simple real spectrum and that they satisfy a natural transitivity assumption on certain intermediate foliations.

We elaborate on the example of de la Llave of two Anosov systems on $\mathbb T^4$ with the same constant periodic eigenvalue data that are only Hölder conjugate. We show that these examples exhaust all possible ways to perturb a $C^{1+\nu}$ conjugacy class without changing any periodic eigenvalue data. Also we generalize these examples to majority of reducible toral automorphisms as well as to certain product diffeomorphisms of $\mathbb T^4$ $C^1$-close to the original example.
Citation: Andrey Gogolev. Smooth conjugacy of Anosov diffeomorphisms on higher-dimensional tori. Journal of Modern Dynamics, 2008, 2 (4) : 645-700. doi: 10.3934/jmd.2008.2.645
[1]

Yong Fang. On smooth conjugacy of expanding maps in higher dimensions. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 687-697. doi: 10.3934/dcds.2011.30.687

[2]

Rafael de la Llave, A. Windsor. Smooth dependence on parameters of solutions to cohomology equations over Anosov systems with applications to cohomology equations on diffeomorphism groups. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1141-1154. doi: 10.3934/dcds.2011.29.1141

[3]

Andrey Gogolev, Misha Guysinsky. $C^1$-differentiable conjugacy of Anosov diffeomorphisms on three dimensional torus. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 183-200. doi: 10.3934/dcds.2008.22.183

[4]

Dyi-Shing Ou, Kenneth James Palmer. A constructive proof of the existence of a semi-conjugacy for a one dimensional map. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 977-992. doi: 10.3934/dcdsb.2012.17.977

[5]

José F. Caicedo, Alfonso Castro. A semilinear wave equation with smooth data and no resonance having no continuous solution. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 653-658. doi: 10.3934/dcds.2009.24.653

[6]

Oliver Butterley, Carlangelo Liverani. Smooth Anosov flows: Correlation spectra and stability. Journal of Modern Dynamics, 2007, 1 (2) : 301-322. doi: 10.3934/jmd.2007.1.301

[7]

Sylvain Ervedoza, Enrique Zuazua. A systematic method for building smooth controls for smooth data. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1375-1401. doi: 10.3934/dcdsb.2010.14.1375

[8]

Wolfgang Krieger, Kengo Matsumoto. Markov-Dyck shifts, neutral periodic points and topological conjugacy. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 1-18. doi: 10.3934/dcds.2019001

[9]

Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101

[10]

Yong Fang, Patrick Foulon, Boris Hasselblatt. Longitudinal foliation rigidity and Lipschitz-continuous invariant forms for hyperbolic flows. Electronic Research Announcements, 2010, 17: 80-89. doi: 10.3934/era.2010.17.80

[11]

Roberto Triggiani. Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space. Evolution Equations and Control Theory, 2016, 5 (4) : 489-514. doi: 10.3934/eect.2016016

[12]

Wei Lin, Jianhong Wu, Guanrong Chen. Generalized snap-back repeller and semi-conjugacy to shift operators of piecewise continuous transformations. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 103-119. doi: 10.3934/dcds.2007.19.103

[13]

A. Yu. Ol'shanskii and M. V. Sapir. The conjugacy problem for groups, and Higman embeddings. Electronic Research Announcements, 2003, 9: 40-50.

[14]

Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873

[15]

Jawad Al-Khal, Henk Bruin, Michael Jakobson. New examples of S-unimodal maps with a sigma-finite absolutely continuous invariant measure. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 35-61. doi: 10.3934/dcds.2008.22.35

[16]

Hun Ki Baek, Younghae Do. Dangerous Border-Collision bifurcations of a piecewise-smooth map. Communications on Pure and Applied Analysis, 2006, 5 (3) : 493-503. doi: 10.3934/cpaa.2006.5.493

[17]

Roland Gunesch, Anatole Katok. Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 61-88. doi: 10.3934/dcds.2000.6.61

[18]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[19]

Christian Bonatti, Stanislav Minkov, Alexey Okunev, Ivan Shilin. Anosov diffeomorphism with a horseshoe that attracts almost any point. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 441-465. doi: 10.3934/dcds.2020017

[20]

Gabriel Ponce, Ali Tahzibi, Régis Varão. Minimal yet measurable foliations. Journal of Modern Dynamics, 2014, 8 (1) : 93-107. doi: 10.3934/jmd.2014.8.93

2021 Impact Factor: 0.641

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]