 Previous Article
 JMD Home
 This Issue

Next Article
On the spectrum of geometric operators on Kähler manifolds
2Frame flow dynamics and hyperbolic rankrigidity in nonpositive curvature
1.  Department of Mathematics,University of Michigan, Ann Arbor,MI 48109, United States 
[1] 
Anatole Katok, Federico Rodriguez Hertz. Measure and cocycle rigidity for certain nonuniformly hyperbolic actions of higherrank abelian groups. Journal of Modern Dynamics, 2010, 4 (3) : 487515. doi: 10.3934/jmd.2010.4.487 
[2] 
Danijela Damjanovic and Anatole Katok. Local rigidity of actions of higher rank abelian groups and KAM method. Electronic Research Announcements, 2004, 10: 142154. 
[3] 
Katrin Gelfert. Nonhyperbolic behavior of geodesic flows of rank 1 surfaces. Discrete & Continuous Dynamical Systems  A, 2019, 39 (1) : 521551. doi: 10.3934/dcds.2019022 
[4] 
Masayuki Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rankone Lie groups. Journal of Modern Dynamics, 2015, 9: 191201. doi: 10.3934/jmd.2015.9.191 
[5] 
Umberto MartínezPeñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267282. doi: 10.3934/amc.2017018 
[6] 
Relinde Jurrius, Ruud Pellikaan. On defining generalized rank weights. Advances in Mathematics of Communications, 2017, 11 (1) : 225235. doi: 10.3934/amc.2017014 
[7] 
Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete & Continuous Dynamical Systems  A, 2014, 34 (7) : 27412750. doi: 10.3934/dcds.2014.34.2741 
[8] 
Mariantonia Cotronei, Tomas Sauer. Full rank filters and polynomial reproduction. Communications on Pure & Applied Analysis, 2007, 6 (3) : 667687. doi: 10.3934/cpaa.2007.6.667 
[9] 
Zhouchen Lin. A review on lowrank models in data analysis. Big Data & Information Analytics, 2016, 1 (2&3) : 139161. doi: 10.3934/bdia.2016001 
[10] 
Yitong Guo, Bingo WingKuen Ling. Principal component analysis with drop rank covariance matrix. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020072 
[11] 
Frank Blume. Minimal rates of entropy convergence for rank one systems. Discrete & Continuous Dynamical Systems  A, 2000, 6 (4) : 773796. doi: 10.3934/dcds.2000.6.773 
[12] 
Michael Blank. Finite rank approximations of expanding maps with neutral singularities. Discrete & Continuous Dynamical Systems  A, 2008, 21 (3) : 749762. doi: 10.3934/dcds.2008.21.749 
[13] 
John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475488. doi: 10.3934/amc.2016019 
[14] 
Keith Burns, Katrin Gelfert. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete & Continuous Dynamical Systems  A, 2014, 34 (5) : 18411872. doi: 10.3934/dcds.2014.34.1841 
[15] 
Gábor Székelyhidi, Ben Weinkove. On a constant rank theorem for nonlinear elliptic PDEs. Discrete & Continuous Dynamical Systems  A, 2016, 36 (11) : 65236532. doi: 10.3934/dcds.2016081 
[16] 
Ke Wei, JianFeng Cai, Tony F. Chan, Shingyu Leung. Guarantees of riemannian optimization for low rank matrix completion. Inverse Problems & Imaging, 2020, 14 (2) : 233265. doi: 10.3934/ipi.2020011 
[17] 
Grégory Berhuy, Jean Fasel, Odile Garotta. Rank weights for arbitrary finite field extensions. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020083 
[18] 
Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271327. doi: 10.3934/jmd.2010.4.271 
[19] 
Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Electronic Research Announcements, 2010, 17: 6879. doi: 10.3934/era.2010.17.68 
[20] 
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for lowrank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 2337. doi: 10.3934/bdia.2017006 
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]