
Previous Article
Anosov automorphisms of nilpotent Lie algebras
 JMD Home
 This Issue

Next Article
Floer homology in disk bundles and symplectically twisted geodesic flows
Nearly continuous Kakutani equivalence of adding machines
1.  Department of Mathematics,The University of TexasPan American, 1201 West University Drive, Edinburg, TX 785392999, United States 
2.  Department of Mathematics, Colorado State University, Fort Collins, CO 80523, United States 
[1] 
Andres del Junco, Daniel J. Rudolph, Benjamin Weiss. Measured topological orbit and Kakutani equivalence. Discrete & Continuous Dynamical Systems  S, 2009, 2 (2) : 221238. doi: 10.3934/dcdss.2009.2.221 
[2] 
Ali Messaoudi, Rafael Asmat Uceda. Stochastic adding machine and $2$dimensional Julia sets. Discrete & Continuous Dynamical Systems  A, 2014, 34 (12) : 52475269. doi: 10.3934/dcds.2014.34.5247 
[3] 
Danilo Antonio Caprio. A class of adding machines and Julia sets. Discrete & Continuous Dynamical Systems  A, 2016, 36 (11) : 59515970. doi: 10.3934/dcds.2016061 
[4] 
Lori Alvin. Toeplitz kneading sequences and adding machines. Discrete & Continuous Dynamical Systems  A, 2013, 33 (8) : 32773287. doi: 10.3934/dcds.2013.33.3277 
[5] 
W. Patrick Hooper, Richard Evan Schwartz. Billiards in nearly isosceles triangles. Journal of Modern Dynamics, 2009, 3 (2) : 159231. doi: 10.3934/jmd.2009.3.159 
[6] 
Alberto Bressan, Fabio S. Priuli. Nearly optimal patchy feedbacks. Discrete & Continuous Dynamical Systems  A, 2008, 21 (3) : 687701. doi: 10.3934/dcds.2008.21.687 
[7] 
Keonhee Lee, Kazuhiro Sakai. Various shadowing properties and their equivalence. Discrete & Continuous Dynamical Systems  A, 2005, 13 (2) : 533540. doi: 10.3934/dcds.2005.13.533 
[8] 
Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Advances in Mathematics of Communications, 2010, 4 (1) : 6981. doi: 10.3934/amc.2010.4.69 
[9] 
W. Patrick Hooper, Richard Evan Schwartz. Erratum: Billiards in nearly isosceles triangles. Journal of Modern Dynamics, 2014, 8 (1) : 133137. doi: 10.3934/jmd.2014.8.133 
[10] 
Luis Barreira, Liviu Horia Popescu, Claudia Valls. Generalized exponential behavior and topological equivalence. Discrete & Continuous Dynamical Systems  B, 2017, 22 (8) : 30233042. doi: 10.3934/dcdsb.2017161 
[11] 
David M. McClendon. An AmbroseKakutani representation theorem for countableto1 semiflows. Discrete & Continuous Dynamical Systems  S, 2009, 2 (2) : 251268. doi: 10.3934/dcdss.2009.2.251 
[12] 
Brett M. Werner. An example of Kakutani equivalent and strong orbit equivalent substitution systems that are not conjugate. Discrete & Continuous Dynamical Systems  S, 2009, 2 (2) : 239249. doi: 10.3934/dcdss.2009.2.239 
[13] 
Jinglai Qiao, Li Yang, Jiawei Yao. Passive control for a class of Nonlinear systems by using the technique of Adding a power integrator. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 00. doi: 10.3934/naco.2020009 
[14] 
Yvan Martel, Frank Merle. Inelastic interaction of nearly equal solitons for the BBM equation. Discrete & Continuous Dynamical Systems  A, 2010, 27 (2) : 487532. doi: 10.3934/dcds.2010.27.487 
[15] 
Dong Chen. Positive metric entropy in nondegenerate nearly integrable systems. Journal of Modern Dynamics, 2017, 11: 4356. doi: 10.3934/jmd.2017003 
[16] 
Michael C. Sullivan. Invariants of twistwise flow equivalence. Discrete & Continuous Dynamical Systems  A, 1998, 4 (3) : 475484. doi: 10.3934/dcds.1998.4.475 
[17] 
Giuseppe Buttazzo, Luigi De Pascale, Ilaria Fragalà. Topological equivalence of some variational problems involving distances. Discrete & Continuous Dynamical Systems  A, 2001, 7 (2) : 247258. doi: 10.3934/dcds.2001.7.247 
[18] 
Nguyen Lam. Equivalence of sharp TrudingerMoserAdams Inequalities. Communications on Pure & Applied Analysis, 2017, 16 (3) : 973998. doi: 10.3934/cpaa.2017047 
[19] 
Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543546. doi: 10.3934/amc.2011.5.543 
[20] 
Mike Crampin, David Saunders. Homogeneity and projective equivalence of differential equation fields. Journal of Geometric Mechanics, 2012, 4 (1) : 2747. doi: 10.3934/jgm.2012.4.27 
2018 Impact Factor: 0.295
Tools
Metrics
Other articles
by authors
[Back to Top]