-
Previous Article
Discontinuity-growth of interval-exchange maps
- JMD Home
- This Issue
-
Next Article
Cocycles over higher-rank abelian actions on quotients of semisimple Lie groups
Logarithm laws for unipotent flows, I
1. | Department of Mathematics, Yale University, New Haven, CT 06520-8283, United States, United States |
[1] |
Jayadev S. Athreya, Gregory A. Margulis. Logarithm laws for unipotent flows, Ⅱ. Journal of Modern Dynamics, 2017, 11: 1-16. doi: 10.3934/jmd.2017001 |
[2] |
Shucheng Yu. Logarithm laws for unipotent flows on hyperbolic manifolds. Journal of Modern Dynamics, 2017, 11: 447-476. doi: 10.3934/jmd.2017018 |
[3] |
Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43 |
[4] |
J. S. Athreya, Anish Ghosh, Amritanshu Prasad. Ultrametric logarithm laws I. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 337-348. doi: 10.3934/dcdss.2009.2.337 |
[5] |
Michael Björklund, Alexander Gorodnik. Central limit theorems in the geometry of numbers. Electronic Research Announcements, 2017, 24: 110-122. doi: 10.3934/era.2017.24.012 |
[6] |
Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010 |
[7] |
Shrikrishna G. Dani. Simultaneous diophantine approximation with quadratic and linear forms. Journal of Modern Dynamics, 2008, 2 (1) : 129-138. doi: 10.3934/jmd.2008.2.129 |
[8] |
Chao Ma, Baowei Wang, Jun Wu. Diophantine approximation of the orbits in topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2455-2471. doi: 10.3934/dcds.2019104 |
[9] |
Hans Koch, João Lopes Dias. Renormalization of diophantine skew flows, with applications to the reducibility problem. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 477-500. doi: 10.3934/dcds.2008.21.477 |
[10] |
Zengjing Chen, Qingyang Liu, Gaofeng Zong. Weak laws of large numbers for sublinear expectation. Mathematical Control and Related Fields, 2018, 8 (3&4) : 637-651. doi: 10.3934/mcrf.2018027 |
[11] |
Siyuan Tang. New time-changes of unipotent flows on quotients of Lorentz groups. Journal of Modern Dynamics, 2022, 18: 13-67. doi: 10.3934/jmd.2022002 |
[12] |
Li-Xin Zhang. On the laws of the iterated logarithm under sub-linear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 409-460. doi: 10.3934/puqr.2021020 |
[13] |
Xiaofan Guo, Shan Li, Xinpeng Li. On the laws of the iterated logarithm with mean-uncertainty under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2022, 7 (1) : 1-12. doi: 10.3934/puqr.2022001 |
[14] |
Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008 |
[15] |
Yuliya Gorb, Dukjin Nam, Alexei Novikov. Numerical simulations of diffusion in cellular flows at high Péclet numbers. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 75-92. doi: 10.3934/dcdsb.2011.15.75 |
[16] |
Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617 |
[17] |
Piotr Gwiazda, Piotr Orlinski, Agnieszka Ulikowska. Finite range method of approximation for balance laws in measure spaces. Kinetic and Related Models, 2017, 10 (3) : 669-688. doi: 10.3934/krm.2017027 |
[18] |
Maria José Pacifico, Fan Yang. Hitting times distribution and extreme value laws for semi-flows. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5861-5881. doi: 10.3934/dcds.2017255 |
[19] |
Qing Yi. On the Stokes approximation equations for two-dimensional compressible flows. Kinetic and Related Models, 2013, 6 (1) : 205-218. doi: 10.3934/krm.2013.6.205 |
[20] |
Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 931-942. doi: 10.3934/cpaa.2019045 |
2021 Impact Factor: 0.641
Tools
Metrics
Other articles
by authors
[Back to Top]