 Previous Article
 JMD Home
 This Issue

Next Article
Floer homology for negative line bundles and Reeb chords in prequantization spaces
On a generalization of Littlewood's conjecture
1.  Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel 
[1] 
Jiyoung Han. Quantitative oppenheim conjecture for $ S $arithmetic quadratic forms of rank $ 3 $ and $ 4 $. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 22052225. doi: 10.3934/dcds.2020359 
[2] 
Tong Li. Wellposedness theory of an inhomogeneous traffic flow model. Discrete and Continuous Dynamical Systems  B, 2002, 2 (3) : 401414. doi: 10.3934/dcdsb.2002.2.401 
[3] 
Hiroko Morimoto. Survey on time periodic problem for fluid flow under inhomogeneous boundary condition. Discrete and Continuous Dynamical Systems  S, 2012, 5 (3) : 631639. doi: 10.3934/dcdss.2012.5.631 
[4] 
Robert Schippa. Generalized inhomogeneous Strichartz estimates. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 33873410. doi: 10.3934/dcds.2017143 
[5] 
Raimund Bürger, Antonio García, Kenneth H. Karlsen, John D. Towers. Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model. Networks and Heterogeneous Media, 2008, 3 (1) : 141. doi: 10.3934/nhm.2008.3.1 
[6] 
JinMyong An, JinMyong Kim, KyuSong Chae. Continuous dependence of the Cauchy problem for the inhomogeneous nonlinear Schrödinger equation in $H^{s} (\mathbb R^{n})$. Discrete and Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021221 
[7] 
D. G. Aronson, N. V. Mantzaris, Hans Othmer. Wave propagation and blocking in inhomogeneous media. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 843876. doi: 10.3934/dcds.2005.13.843 
[8] 
Ionuţ Munteanu. Boundary stabilization of nondiagonal systems by proportional feedback forms. Communications on Pure and Applied Analysis, 2021, 20 (9) : 31133128. doi: 10.3934/cpaa.2021098 
[9] 
Fioralba Cakoni, Anne Cossonnière, Houssem Haddar. Transmission eigenvalues for inhomogeneous media containing obstacles. Inverse Problems and Imaging, 2012, 6 (3) : 373398. doi: 10.3934/ipi.2012.6.373 
[10] 
Graziano Crasta, Benedetto Piccoli. Viscosity solutions and uniqueness for systems of inhomogeneous balance laws. Discrete and Continuous Dynamical Systems, 1997, 3 (4) : 477502. doi: 10.3934/dcds.1997.3.477 
[11] 
Fang Zeng, Xiaodong Liu, Jiguang Sun, Liwei Xu. The reciprocity gap method for a cavity in an inhomogeneous medium. Inverse Problems and Imaging, 2016, 10 (3) : 855868. doi: 10.3934/ipi.2016024 
[12] 
Fenglong Qu, Jiaqing Yang. On recovery of an inhomogeneous cavity in inverse acoustic scattering. Inverse Problems and Imaging, 2018, 12 (2) : 281291. doi: 10.3934/ipi.2018012 
[13] 
Miroslav Bulíček, Eduard Feireisl, Josef Málek, Roman Shvydkoy. On the motion of incompressible inhomogeneous EulerKorteweg fluids. Discrete and Continuous Dynamical Systems  S, 2010, 3 (3) : 497515. doi: 10.3934/dcdss.2010.3.497 
[14] 
Ola I. H. Maehlen. Solitary waves for weakly dispersive equations with inhomogeneous nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 41134130. doi: 10.3934/dcds.2020174 
[15] 
Guillermo Reyes, JuanLuis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks and Heterogeneous Media, 2006, 1 (2) : 337351. doi: 10.3934/nhm.2006.1.337 
[16] 
Mohammad Asadzadeh, Anders Brahme, Jiping Xin. Galerkin methods for primary ion transport in inhomogeneous media. Kinetic and Related Models, 2010, 3 (3) : 373394. doi: 10.3934/krm.2010.3.373 
[17] 
Carmen Cortázar, Manuel Elgueta, Jorge GarcíaMelián, Salomé Martínez. Finite mass solutions for a nonlocal inhomogeneous dispersal equation. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 14091419. doi: 10.3934/dcds.2015.35.1409 
[18] 
Michael P. Mortell, Brian R. Seymour. Resonant oscillations of an inhomogeneous gas in a closed cylindrical tube. Discrete and Continuous Dynamical Systems  B, 2007, 7 (3) : 619628. doi: 10.3934/dcdsb.2007.7.619 
[19] 
Liping Wang, Juncheng Wei. Infinite multiplicity for an inhomogeneous supercritical problem in entire space. Communications on Pure and Applied Analysis, 2013, 12 (3) : 12431257. doi: 10.3934/cpaa.2013.12.1243 
[20] 
Atul Kumar, R. R. Yadav. Analytical approach of onedimensional solute transport through inhomogeneous semiinfinite porous domain for unsteady flow: Dispersion being proportional to square of velocity. Conference Publications, 2013, 2013 (special) : 457466. doi: 10.3934/proc.2013.2013.457 
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]