April  2010, 4(2): 227-241. doi: 10.3934/jmd.2010.4.227

On the work of Dolgopyat on partial and nonuniform hyperbolicity (Brin Prize article)

1. 

Department of Mathematics, McAllister Building, Pennsylvania State University, University Park, PA 16802

Received  February 2010 Revised  May 2010 Published  August 2010

This paper is a nontechnical survey and aims to illustrate Dolgopyat'sprofound contributions to smooth ergodic theory. I will discuss some ofDolgopyat's work on partial hyperbolicity and nonuniform hyperbolicity withemphasis on the interaction between the two-the class of dynamical systemswith mixed hyperbolicity. On one hand, this includes uniformlypartially hyperbolic diffeomorphisms with nonzero Lyapunov exponents in thecenter direction. The study of their ergodic properties has provided analternative approach to the Pugh-Shub stable ergodicity theory for bothconservative and dissipative systems. On the other hand, ideas of mixedhyperbolicity have been used in constructing volume-preservingdiffeomorphisms with nonzero Lyapunov exponents on any manifold.
Citation: Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227
[1]

Carlos H. Vásquez. Stable ergodicity for partially hyperbolic attractors with positive central Lyapunov exponents. Journal of Modern Dynamics, 2009, 3 (2) : 233-251. doi: 10.3934/jmd.2009.3.233

[2]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[3]

Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187

[4]

Keith Burns, Dmitry Dolgopyat, Yakov Pesin, Mark Pollicott. Stable ergodicity for partially hyperbolic attractors with negative central exponents. Journal of Modern Dynamics, 2008, 2 (1) : 63-81. doi: 10.3934/jmd.2008.2.63

[5]

Wael Bahsoun, Paweł Góra. SRB measures for certain Markov processes. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 17-37. doi: 10.3934/dcds.2011.30.17

[6]

The Editors. The 2013 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2014, 8 (1) : i-ii. doi: 10.3934/jmd.2014.8.1i

[7]

The Editors. The 2011 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2012, 6 (2) : i-ii. doi: 10.3934/jmd.2012.6.2i

[8]

The Editors. The 2008 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2008, 2 (3) : i-ii. doi: 10.3934/jmd.2008.2.3i

[9]

The Editors. The 2009 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2010, 4 (2) : i-ii. doi: 10.3934/jmd.2010.4.2i

[10]

The Editors. The 2015 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2016, 10: 173-174. doi: 10.3934/jmd.2016.10.173

[11]

The Editors. The 2018 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2019, 15: 425-426. doi: 10.3934/jmd.2019025

[12]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[13]

The Editors. The 2017 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2019, 15: 131-132. doi: 10.3934/jmd.2019015

[14]

Rasul Shafikov, Christian Wolf. Stable sets, hyperbolicity and dimension. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 403-412. doi: 10.3934/dcds.2005.12.403

[15]

Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901

[16]

Charles Pugh, Michael Shub, Alexander Starkov. Unique ergodicity, stable ergodicity, and the Mautner phenomenon for diffeomorphisms. Discrete & Continuous Dynamical Systems, 2006, 14 (4) : 845-855. doi: 10.3934/dcds.2006.14.845

[17]

Eleonora Catsigeras, Heber Enrich. SRB measures of certain almost hyperbolic diffeomorphisms with a tangency. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 177-202. doi: 10.3934/dcds.2001.7.177

[18]

Mikhail Lyubich. Forty years of unimodal dynamics: On the occasion of Artur Avila winning the Brin Prize. Journal of Modern Dynamics, 2012, 6 (2) : 183-203. doi: 10.3934/jmd.2012.6.183

[19]

Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91

[20]

Edson de Faria, Pablo Guarino. Real bounds and Lyapunov exponents. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 1957-1982. doi: 10.3934/dcds.2016.36.1957

2020 Impact Factor: 0.848

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]