\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The action of finite-state tree automorphisms on Bernoulli measures

Abstract Related Papers Cited by
  • We describe how a finite-state automorphism of a regular rooted tree changes the Bernoulli measure on the boundary of the tree. It turns out that a finite-state automorphism of polynomial growth, as defined by S. Sidki, preserves a measure class of a Bernoulli measure, and we write down the explicit formula for its Radon-Nikodym derivative. On the other hand, the image of the Bernoulli measure under the action of a strongly connected finite-state automorphism is singular to the measure itself.
    Mathematics Subject Classification: Primary: 20E08.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Tr. Mat. Inst. Steklova, 231 (2000), 5-45.

    [2]

    Laurent Bartholdi and Volodymyr Nekrashevych, Thurston equivalence of topological polynomials, Aca Math., 197 (2006), 1-51.doi: doi:10.1007/s11511-006-0007-3.

    [3]

    Patrick Billingsley, "Ergodic Theory and Information," Robert E. Krieger Publishing Co., Huntington, N.Y., 1978.

    [4]

    R. I. Grigorchuk, On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR, 271 (1983), 30-33.

    [5]

    R. I. Grigorchuk, V. V. Nekrashevich and V. I. Sushchanskiĭ, Automata, dynamical systems, and groups, Tr. Mat. Inst. Steklova, 231 (2000), 134-214.

    [6]

    V. B. Kudryavtsev, S. V. Aleshin and A. S. Podkolzin, Vvedenie v teoriyu avtomatov, (Russian) [Introduction to automata theory], "Nauka," Moscow, 1985.

    [7]

    J. Milnor, Problem 5603, Amer. Math. Monthly, 75 (1968), 685-686,doi: doi:10.2307/2313822.

    [8]

    Volodymyr Nekrashevych, "Self-similar Groups," American Mathematical Society, 2005.

    [9]

    A. V. Ryabinin, Stochastic functions of finite automata, in "Algebra, Logic and Number Theory" (Russian), 77-80, Moskov. Gos. Univ., Moscow, 1986.

    [10]

    Said Sidki, Automorphisms of one-rooted trees: Growth, circuit structure, and acyclicity, J. Math. Sci. (New York), 100 (2000), 1925-1943.doi: doi:10.1007/BF02677504.

    [11]

    V. A. Ufnarovskii, A growth criterion for graphs and algebras defined by words, Math. Notes, 31 (1982), 238-241.doi: doi:10.1007/BF01145476.

    [12]

    Mariya Vorobets and Yaroslav Vorobets, On a free group of transformations defined by an automaton, Geom. Dedicata, 124 (2007), 237-249.doi: doi:10.1007/s10711-006-9060-5.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(103) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return