• Previous Article
    The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis
  • JMD Home
  • This Issue
  • Next Article
    Linear cocycles over hyperbolic systems and criteria of conformality
July  2010, 4(3): 443-451. doi: 10.3934/jmd.2010.4.443

The action of finite-state tree automorphisms on Bernoulli measures

1. 

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, United States

Received  October 2009 Revised  July 2010 Published  October 2010

We describe how a finite-state automorphism of a regular rooted tree changes the Bernoulli measure on the boundary of the tree. It turns out that a finite-state automorphism of polynomial growth, as defined by S. Sidki, preserves a measure class of a Bernoulli measure, and we write down the explicit formula for its Radon-Nikodym derivative. On the other hand, the image of the Bernoulli measure under the action of a strongly connected finite-state automorphism is singular to the measure itself.
Citation: Rostyslav Kravchenko. The action of finite-state tree automorphisms on Bernoulli measures. Journal of Modern Dynamics, 2010, 4 (3) : 443-451. doi: 10.3934/jmd.2010.4.443
References:
[1]

L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Tr. Mat. Inst. Steklova, 231 (2000), 5-45.  Google Scholar

[2]

Laurent Bartholdi and Volodymyr Nekrashevych, Thurston equivalence of topological polynomials, Aca Math., 197 (2006), 1-51. doi: doi:10.1007/s11511-006-0007-3.  Google Scholar

[3]

Patrick Billingsley, "Ergodic Theory and Information," Robert E. Krieger Publishing Co., Huntington, N.Y., 1978.  Google Scholar

[4]

R. I. Grigorchuk, On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR, 271 (1983), 30-33.  Google Scholar

[5]

R. I. Grigorchuk, V. V. Nekrashevich and V. I. Sushchanskiĭ, Automata, dynamical systems, and groups, Tr. Mat. Inst. Steklova, 231 (2000), 134-214.  Google Scholar

[6]

V. B. Kudryavtsev, S. V. Aleshin and A. S. Podkolzin, Vvedenie v teoriyu avtomatov, (Russian) [Introduction to automata theory], "Nauka," Moscow, 1985.  Google Scholar

[7]

J. Milnor, Problem 5603, Amer. Math. Monthly, 75 (1968), 685-686, doi: doi:10.2307/2313822.  Google Scholar

[8]

Volodymyr Nekrashevych, "Self-similar Groups," American Mathematical Society, 2005.  Google Scholar

[9]

A. V. Ryabinin, Stochastic functions of finite automata, in "Algebra, Logic and Number Theory" (Russian), 77-80, Moskov. Gos. Univ., Moscow, 1986.  Google Scholar

[10]

Said Sidki, Automorphisms of one-rooted trees: Growth, circuit structure, and acyclicity, J. Math. Sci. (New York), 100 (2000), 1925-1943. doi: doi:10.1007/BF02677504.  Google Scholar

[11]

V. A. Ufnarovskii, A growth criterion for graphs and algebras defined by words, Math. Notes, 31 (1982), 238-241. doi: doi:10.1007/BF01145476.  Google Scholar

[12]

Mariya Vorobets and Yaroslav Vorobets, On a free group of transformations defined by an automaton, Geom. Dedicata, 124 (2007), 237-249. doi: doi:10.1007/s10711-006-9060-5.  Google Scholar

show all references

References:
[1]

L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Tr. Mat. Inst. Steklova, 231 (2000), 5-45.  Google Scholar

[2]

Laurent Bartholdi and Volodymyr Nekrashevych, Thurston equivalence of topological polynomials, Aca Math., 197 (2006), 1-51. doi: doi:10.1007/s11511-006-0007-3.  Google Scholar

[3]

Patrick Billingsley, "Ergodic Theory and Information," Robert E. Krieger Publishing Co., Huntington, N.Y., 1978.  Google Scholar

[4]

R. I. Grigorchuk, On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR, 271 (1983), 30-33.  Google Scholar

[5]

R. I. Grigorchuk, V. V. Nekrashevich and V. I. Sushchanskiĭ, Automata, dynamical systems, and groups, Tr. Mat. Inst. Steklova, 231 (2000), 134-214.  Google Scholar

[6]

V. B. Kudryavtsev, S. V. Aleshin and A. S. Podkolzin, Vvedenie v teoriyu avtomatov, (Russian) [Introduction to automata theory], "Nauka," Moscow, 1985.  Google Scholar

[7]

J. Milnor, Problem 5603, Amer. Math. Monthly, 75 (1968), 685-686, doi: doi:10.2307/2313822.  Google Scholar

[8]

Volodymyr Nekrashevych, "Self-similar Groups," American Mathematical Society, 2005.  Google Scholar

[9]

A. V. Ryabinin, Stochastic functions of finite automata, in "Algebra, Logic and Number Theory" (Russian), 77-80, Moskov. Gos. Univ., Moscow, 1986.  Google Scholar

[10]

Said Sidki, Automorphisms of one-rooted trees: Growth, circuit structure, and acyclicity, J. Math. Sci. (New York), 100 (2000), 1925-1943. doi: doi:10.1007/BF02677504.  Google Scholar

[11]

V. A. Ufnarovskii, A growth criterion for graphs and algebras defined by words, Math. Notes, 31 (1982), 238-241. doi: doi:10.1007/BF01145476.  Google Scholar

[12]

Mariya Vorobets and Yaroslav Vorobets, On a free group of transformations defined by an automaton, Geom. Dedicata, 124 (2007), 237-249. doi: doi:10.1007/s10711-006-9060-5.  Google Scholar

[1]

Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete & Continuous Dynamical Systems, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423

[2]

Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095

[3]

Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 257-269. doi: 10.3934/naco.2012.2.257

[4]

Brian Marcus and Selim Tuncel. Powers of positive polynomials and codings of Markov chains onto Bernoulli shifts. Electronic Research Announcements, 1999, 5: 91-101.

[5]

Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004

[6]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2021, 8 (1) : 35-59. doi: 10.3934/jdg.2020033

[7]

Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control & Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012

[8]

Ralf Banisch, Carsten Hartmann. A sparse Markov chain approximation of LQ-type stochastic control problems. Mathematical Control & Related Fields, 2016, 6 (3) : 363-389. doi: 10.3934/mcrf.2016007

[9]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[10]

Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034

[11]

Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39

[12]

Alexandre Fotue-Tabue, Edgar Martínez-Moro, J. Thomas Blackford. On polycyclic codes over a finite chain ring. Advances in Mathematics of Communications, 2020, 14 (3) : 455-466. doi: 10.3934/amc.2020028

[13]

Kaïs Ammari, Denis Mercier, Virginie Régnier, Julie Valein. Spectral analysis and stabilization of a chain of serially connected Euler-Bernoulli beams and strings. Communications on Pure & Applied Analysis, 2012, 11 (2) : 785-807. doi: 10.3934/cpaa.2012.11.785

[14]

A. Mittal, N. Hemachandra. Learning algorithms for finite horizon constrained Markov decision processes. Journal of Industrial & Management Optimization, 2007, 3 (3) : 429-444. doi: 10.3934/jimo.2007.3.429

[15]

Hisayoshi Toyokawa. $\sigma$-finite invariant densities for eventually conservative Markov operators. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2641-2669. doi: 10.3934/dcds.2020144

[16]

Richard Sharp. Conformal Markov systems, Patterson-Sullivan measure on limit sets and spectral triples. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2711-2727. doi: 10.3934/dcds.2016.36.2711

[17]

Luigi Ambrosio, Michele Miranda jr., Diego Pallara. Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 591-606. doi: 10.3934/dcds.2010.28.591

[18]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[19]

Piotr Gwiazda, Piotr Orlinski, Agnieszka Ulikowska. Finite range method of approximation for balance laws in measure spaces. Kinetic & Related Models, 2017, 10 (3) : 669-688. doi: 10.3934/krm.2017027

[20]

T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete & Continuous Dynamical Systems, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]