\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis

Abstract Related Papers Cited by
  • We compute explicitly the action of the group of affine diffeomorphisms on the relative homology of two remarkable origamis discovered respectively by Forni (in genus $3$) and Forni and Matheus (in genus $4$). We show that, in both cases, the action on the nontrivial part of the homology is through finite groups. In particular, the action on some $4$-dimensional invariant subspace of the homology leaves invariant a root system of $D_4$ type. This provides as a by-product a new proof of (slightly stronger versions of) the results of Forni and Matheus: the nontrivial Lyapunov exponents of the Kontsevich-Zorich cocycle for the Teichmüller disks of these two origamis are equal to zero.
    Mathematics Subject Classification: Primary: 37D40; Secondary: 37Axx.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture, Acta Math., 198 (2007), 1-56.doi: doi:10.1007/s11511-007-0012-1.

    [2]

    O. Bauer, Familien von Jacobivarietäten über Origamikurven, PhD thesis, http://digbib.ubka.uni-karlsruhe.de/volltexte/1000011870, 2009.

    [3]

    J. Borwein and P. Borwein, "Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity," Canadian Math. Soc. Series of Monographs and Advanced Texts, John Willey and Sons, New York, 1987.

    [4]

    N. Bourbaki, "Groupes et Algèbres de Lie. Chapitre VI: Systèmes de Racines," Hermann, Paris, 1960.

    [5]

    I. Bouw and M. MöllerTeichmüller curves, triangle groups, and Lyapunov exponents, to appear in Annals of Math.

    [6]

    G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math., 155 (2002), 1-103.doi: doi:10.2307/3062150.

    [7]

    G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle, "Handbook of Dynamical Systems" (eds. B. Hasselblatt and A. Katok), v. 1B, Elsevier, (2006), 549-580.

    [8]

    G. Forni and C. MatheusAn example of a Teichmüller disk in genus 4 with degenerate Kontsevich-Zorich spectrum, preprint, arXiv:0810.0023.

    [9]

    F. Herrlich and G. Schmithüsen, An extraordinary origami curve, Math. Nachr., 281 (2008), 219-237.doi: doi:10.1002/mana.200510597.

    [10]

    P. Hubert and T. Schmidt, An introduction to Veech surfaces, "Handbook of Dynamical Systems" (eds. B. Hasselblatt and A. Katok), v. 1B, Elsevier, (2006), 501-526.

    [11]

    M. Kontsevich, Lyapunov exponents and Hodge theory, in "The Mathematical Beauty of Physics" (Saclay, 1996), 318-332, Adv. Ser. Math. Phys., v. 24, World Scientific, River Edge, NJ, 1997.

    [12]

    M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.doi: doi:10.1007/s00222-003-0303-x.

    [13]

    E. Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials, Ann. Sci. ENS, 41 (2008), 1-56.

    [14]

    H. Masur, Interval-exchange transformations and measured foliations, Ann. of Math., 115 (1982), 169-200.doi: doi:10.2307/1971341.

    [15]

    M. MöllerShimura and Teichmüller curves, preprint, arXiv:math/0501333.

    [16]

    W. Veech, Teichmüller geodesic flow, Ann. of Math., 124 (1986), 441-530.doi: doi:10.2307/2007091.

    [17]

    W. Veech, Gauss measures for transformations on the space of interval-exchange maps, Ann. of Math., 115 (1982), 201-242.doi: doi:10.2307/1971391.

    [18]

    W. Veech, Moduli spaces of quadratic differentials, J. Anal. Math., 55 (1990), 117-171.doi: doi:10.1007/BF02789200.

    [19]

    W. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Inv. Math., 97 (1989), 553-583.doi: doi:10.1007/BF01388890.

    [20]

    J. C. Yoccoz, Interval-exchange maps and translation surfaces, Clay Math. Inst. Summer School on Homogenous Flows, Moduli Spaces and Arithmetic, Pisa, http://www.college-de-france.fr/media/equ_dif/UPL15305_PisaLecturesJCY2007.pdf, 2007.

    [21]

    A. Zorich, Asymptotic flag of an orientable measured foliation on a surface, in "Geometric Study of Foliations," World Scientific, (1994), 479-498.

    [22]

    A. Zorich, Explicit Jenkins-Strebel representatives of all strata of Abelian and quadratic differentials, Journal of Modern Dynamics, 2 (2008), 139-185.

    [23]

    A. Zorich, Flat surfaces, "Frontiers in Number Theory, Physics, and Geometry," v. I, Springer, (2006), 437-583.doi: doi:10.1007/978-3-540-31347-2_13.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return