Advanced Search
Article Contents
Article Contents

Nonexpanding attractors: Conjugacy to algebraic models and classification in 3-manifolds

Abstract Related Papers Cited by
  • We prove a result motivated by Williams's classification of expanding attractors and the Franks--Newhouse Theorem on codimension-$1$ Anosov diffeomorphisms: If $\Lambda$ is a topologically mixing hyperbolic attractor such that $\dim\E^u$|$\Lambda$ = 1, then either $\Lambda$ is expanding or is homeomorphic to a compact abelian group (a toral solenoid). In the latter case, $f$|$\Lambda$ is conjugate to a group automorphism. As a corollary, we obtain a classification of all $2$-dimensional basic sets in $3$-manifolds. Furthermore, we classify all topologically mixing hyperbolic attractors in $3$-manifolds in terms of the classically studied examples, answering a question of Bonatti in [1].
    Mathematics Subject Classification: Primary: 37C70, 37C15; Secondary: 37D20.


    \begin{equation} \\ \end{equation}
  • [1]

    C. Bonatti, Problem in dynamical systems, http://www.math.sunysb.edu/dynamics/bonatti_prob.txt, November 1999.


    H. G. Bothe, Expanding attractors with stable foliations of class $C^0$, in "Ergodic theory and related topics, III," Lecture Notes in Math., 1514, Springer, Berlin, (1992), 36-61.


    B. Brenken, The local product structure of expansive automorphisms of solenoids and their associated $C^$*-algebras, Canad. J. Math., 48 (1996), 692-709.


    A. BrownConstraints on dynamics preserving certain hyperbolic sets, Ergodic Theory Dynam. Systems, to appear.


    T. Fisher, Hyperbolic sets with nonempty interior, Discrete Contin. Dyn. Syst., 15 (2006), 433-446.doi: doi:10.3934/dcds.2006.15.433.


    J. Franks, Anosov diffeomorphisms, in "Global Analysis," Amer. Math. Soc., Providence, R.I., 1970, 61-93.


    V. Z. Grines, V. S. Medvedev, and E. V. Zhuzhoma, On surface attractors and repellers in 3-manifolds, Mat. Zametki, 78 (2005), 813-826.


    B. Günther, Attractors which are homeomorphic to compact abelian groups, Manuscripta Math., 82 (1994), 31-40.doi: doi:10.1007/BF02567683.


    K. Hiraide, A simple proof of the Franks-Newhouse theorem on codimension-one Anosov diffeomorphisms, Ergodic Theory Dynam. Systems, 21 (2001), 801-806.doi: doi:10.1017/S0143385701001390.


    W. Hurewicz and H. Wallman, "Dimension Theory," Princeton University Press, Princeton, N. J., 1941.


    B. Jiang, S. Wang, and H. Zheng, No embeddings of solenoids into surfaces, Proc. Amer. Math. Soc., 136 (2008), 3697-3700.doi: doi:10.1090/S0002-9939-08-09340-4.


    J. L. Kaplan, J. Mallet-Paret, and J. A. Yorke, The Lyapunov dimension of a nowhere differentiable attracting torus, Ergodic Theory Dynam. Systems, 4 (1984), 261-281.doi: doi:10.1017/S0143385700002431.


    A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems," Cambridge University Press, Cambridge, 1995.


    A. Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math., 96 (1974), 422-429.doi: doi:10.2307/2373551.


    S. E. Newhouse, On codimension one Anosov diffeomorphisms, Amer. J. Math., 92 (1970), 761-770.doi: doi:10.2307/2373372.


    R. V. Plykin, The topology of basic sets of Smale diffeomorphisms, Math. USSR-Sb., 13 (1971), 297-307.doi: doi:10.1070/SM1971v013n02ABEH001026.


    R. V. Plykin, Hyperbolic attractors of diffeomorphisms, Russian Math. Surveys, 35 (1980), 109-121.doi: doi:10.1070/RM1980v035n03ABEH001702.


    R. V. Plykin, Hyperbolic attractors of diffeomorphisms (the nonorientable case), Russian Math. Surveys, 35 (1980), 186-187.doi: doi:10.1070/RM1980v035n04ABEH001879.


    D. Ruelle and D. Sullivan, Currents, flows and diffeomorphisms, Topology, 14 (1975), 319-327.doi: doi:10.1016/0040-9383(75)90016-6.


    S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.doi: doi:10.1090/S0002-9904-1967-11798-1.


    R. F. Williams, One-dimensional non-wandering sets, Topology, 6 (1967), 473-487.doi: doi:10.1016/0040-9383(67)90005-5.


    R. F. Williams, Classification of one dimensional attractors, in "Global Analysis," Amer. Math. Soc., Providence, R.I., 1970, 341-361.


    R. F. Williams, Expanding attractors, Inst. Hautes Études Sci. Publ. Math., (1974), 169-203.

  • 加载中

Article Metrics

HTML views() PDF downloads(118) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint