-
Previous Article
Zygmund strong foliations in higher dimension
- JMD Home
- This Issue
-
Next Article
Measure and cocycle rigidity for certain nonuniformly hyperbolic actions of higher-rank abelian groups
Nonexpanding attractors: Conjugacy to algebraic models and classification in 3-manifolds
1. | Department of Mathematics, Tufts University, Medford, MA 02155, United States |
References:
[1] |
C. Bonatti, Problem in dynamical systems,, , (1999). Google Scholar |
[2] |
H. G. Bothe, Expanding attractors with stable foliations of class $C^0$,, in, 1514 (1992), 36.
|
[3] |
B. Brenken, The local product structure of expansive automorphisms of solenoids and their associated $C^$*-algebras,, Canad. J. Math., 48 (1996), 692.
|
[4] |
A. Brown, Constraints on dynamics preserving certain hyperbolic sets,, Ergodic Theory Dynam. Systems, (). Google Scholar |
[5] |
T. Fisher, Hyperbolic sets with nonempty interior,, Discrete Contin. Dyn. Syst., 15 (2006), 433.
doi: doi:10.3934/dcds.2006.15.433. |
[6] |
J. Franks, Anosov diffeomorphisms,, in, (1970), 61.
|
[7] |
V. Z. Grines, V. S. Medvedev, and E. V. Zhuzhoma, On surface attractors and repellers in 3-manifolds,, Mat. Zametki, 78 (2005), 813.
|
[8] |
B. Günther, Attractors which are homeomorphic to compact abelian groups,, Manuscripta Math., 82 (1994), 31.
doi: doi:10.1007/BF02567683. |
[9] |
K. Hiraide, A simple proof of the Franks-Newhouse theorem on codimension-one Anosov diffeomorphisms,, Ergodic Theory Dynam. Systems, 21 (2001), 801.
doi: doi:10.1017/S0143385701001390. |
[10] |
W. Hurewicz and H. Wallman, "Dimension Theory,", Princeton University Press, (1941).
|
[11] |
B. Jiang, S. Wang, and H. Zheng, No embeddings of solenoids into surfaces,, Proc. Amer. Math. Soc., 136 (2008), 3697.
doi: doi:10.1090/S0002-9939-08-09340-4. |
[12] |
J. L. Kaplan, J. Mallet-Paret, and J. A. Yorke, The Lyapunov dimension of a nowhere differentiable attracting torus,, Ergodic Theory Dynam. Systems, 4 (1984), 261.
doi: doi:10.1017/S0143385700002431. |
[13] |
A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Cambridge University Press, (1995).
|
[14] |
A. Manning, There are no new Anosov diffeomorphisms on tori,, Amer. J. Math., 96 (1974), 422.
doi: doi:10.2307/2373551. |
[15] |
S. E. Newhouse, On codimension one Anosov diffeomorphisms,, Amer. J. Math., 92 (1970), 761.
doi: doi:10.2307/2373372. |
[16] |
R. V. Plykin, The topology of basic sets of Smale diffeomorphisms,, Math. USSR-Sb., 13 (1971), 297.
doi: doi:10.1070/SM1971v013n02ABEH001026. |
[17] |
R. V. Plykin, Hyperbolic attractors of diffeomorphisms,, Russian Math. Surveys, 35 (1980), 109.
doi: doi:10.1070/RM1980v035n03ABEH001702. |
[18] |
R. V. Plykin, Hyperbolic attractors of diffeomorphisms (the nonorientable case),, Russian Math. Surveys, 35 (1980), 186.
doi: doi:10.1070/RM1980v035n04ABEH001879. |
[19] |
D. Ruelle and D. Sullivan, Currents, flows and diffeomorphisms,, Topology, 14 (1975), 319.
doi: doi:10.1016/0040-9383(75)90016-6. |
[20] |
S. Smale, Differentiable dynamical systems,, Bull. Amer. Math. Soc., 73 (1967), 747.
doi: doi:10.1090/S0002-9904-1967-11798-1. |
[21] |
R. F. Williams, One-dimensional non-wandering sets,, Topology, 6 (1967), 473.
doi: doi:10.1016/0040-9383(67)90005-5. |
[22] |
R. F. Williams, Classification of one dimensional attractors,, in, (1970), 341.
|
[23] |
R. F. Williams, Expanding attractors,, Inst. Hautes Études Sci. Publ. Math., (1974), 169.
|
show all references
References:
[1] |
C. Bonatti, Problem in dynamical systems,, , (1999). Google Scholar |
[2] |
H. G. Bothe, Expanding attractors with stable foliations of class $C^0$,, in, 1514 (1992), 36.
|
[3] |
B. Brenken, The local product structure of expansive automorphisms of solenoids and their associated $C^$*-algebras,, Canad. J. Math., 48 (1996), 692.
|
[4] |
A. Brown, Constraints on dynamics preserving certain hyperbolic sets,, Ergodic Theory Dynam. Systems, (). Google Scholar |
[5] |
T. Fisher, Hyperbolic sets with nonempty interior,, Discrete Contin. Dyn. Syst., 15 (2006), 433.
doi: doi:10.3934/dcds.2006.15.433. |
[6] |
J. Franks, Anosov diffeomorphisms,, in, (1970), 61.
|
[7] |
V. Z. Grines, V. S. Medvedev, and E. V. Zhuzhoma, On surface attractors and repellers in 3-manifolds,, Mat. Zametki, 78 (2005), 813.
|
[8] |
B. Günther, Attractors which are homeomorphic to compact abelian groups,, Manuscripta Math., 82 (1994), 31.
doi: doi:10.1007/BF02567683. |
[9] |
K. Hiraide, A simple proof of the Franks-Newhouse theorem on codimension-one Anosov diffeomorphisms,, Ergodic Theory Dynam. Systems, 21 (2001), 801.
doi: doi:10.1017/S0143385701001390. |
[10] |
W. Hurewicz and H. Wallman, "Dimension Theory,", Princeton University Press, (1941).
|
[11] |
B. Jiang, S. Wang, and H. Zheng, No embeddings of solenoids into surfaces,, Proc. Amer. Math. Soc., 136 (2008), 3697.
doi: doi:10.1090/S0002-9939-08-09340-4. |
[12] |
J. L. Kaplan, J. Mallet-Paret, and J. A. Yorke, The Lyapunov dimension of a nowhere differentiable attracting torus,, Ergodic Theory Dynam. Systems, 4 (1984), 261.
doi: doi:10.1017/S0143385700002431. |
[13] |
A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Cambridge University Press, (1995).
|
[14] |
A. Manning, There are no new Anosov diffeomorphisms on tori,, Amer. J. Math., 96 (1974), 422.
doi: doi:10.2307/2373551. |
[15] |
S. E. Newhouse, On codimension one Anosov diffeomorphisms,, Amer. J. Math., 92 (1970), 761.
doi: doi:10.2307/2373372. |
[16] |
R. V. Plykin, The topology of basic sets of Smale diffeomorphisms,, Math. USSR-Sb., 13 (1971), 297.
doi: doi:10.1070/SM1971v013n02ABEH001026. |
[17] |
R. V. Plykin, Hyperbolic attractors of diffeomorphisms,, Russian Math. Surveys, 35 (1980), 109.
doi: doi:10.1070/RM1980v035n03ABEH001702. |
[18] |
R. V. Plykin, Hyperbolic attractors of diffeomorphisms (the nonorientable case),, Russian Math. Surveys, 35 (1980), 186.
doi: doi:10.1070/RM1980v035n04ABEH001879. |
[19] |
D. Ruelle and D. Sullivan, Currents, flows and diffeomorphisms,, Topology, 14 (1975), 319.
doi: doi:10.1016/0040-9383(75)90016-6. |
[20] |
S. Smale, Differentiable dynamical systems,, Bull. Amer. Math. Soc., 73 (1967), 747.
doi: doi:10.1090/S0002-9904-1967-11798-1. |
[21] |
R. F. Williams, One-dimensional non-wandering sets,, Topology, 6 (1967), 473.
doi: doi:10.1016/0040-9383(67)90005-5. |
[22] |
R. F. Williams, Classification of one dimensional attractors,, in, (1970), 341.
|
[23] |
R. F. Williams, Expanding attractors,, Inst. Hautes Études Sci. Publ. Math., (1974), 169.
|
[1] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[2] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
[3] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[4] |
Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020105 |
[5] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020434 |
[6] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[7] |
Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281 |
[8] |
Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172 |
[9] |
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021018 |
[10] |
Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021023 |
[11] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[12] |
Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123 |
[13] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[14] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[15] |
Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021014 |
[16] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[17] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
[18] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[19] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[20] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]