July  2010, 4(3): 549-569. doi: 10.3934/jmd.2010.4.549

Zygmund strong foliations in higher dimension

1. 

Département de Mathématiques, Université de Cergy-Pontoise, avenue Adolphe Chauvin, 95302, Cergy-Pontoise Cedex, France

2. 

Institut de Recherche Mathematique Avancée, UMR 7501 du Centre National de la Recherche Scientifique, 7 Rue René Descartes, 67084, Strasbourg Cedex

3. 

Department of Mathematics, Tufts University, Medford, MA 02155

Received  May 2010 Revised  June 2010 Published  October 2010

For a compact Riemannian manifold $M$, $k\ge2$ and a uniformly quasiconformal transversely symplectic $C^k$ Anosov flow $\varphi$:$\R\times M\to M$ we define the longitudinal KAM-cocycle and use it to prove a rigidity result: $E^u\oplus E^s$ is Zygmund-regular, and higher regularity implies vanishing of the longitudinal KAM-cocycle, which in turn implies that $E^u\oplus E^s$ is Lipschitz-continuous. Results proved elsewhere then imply that the flow is smoothly conjugate to an algebraic one.
Citation: Yong Fang, Patrick Foulon, Boris Hasselblatt. Zygmund strong foliations in higher dimension. Journal of Modern Dynamics, 2010, 4 (3) : 549-569. doi: 10.3934/jmd.2010.4.549
References:
[1]

N. Dairbekov and G. Paternain, Longitudinal KAM cocycles and action spectra of magnetic flows,, Mathematics Research Letters, 12 (2005), 719.   Google Scholar

[2]

D. DeLatte, Nonstationary normal forms and cocycle invariants,, Random and Computational Dynamics, 1 (1995), 229.   Google Scholar

[3]

Y. Fang, On the rigidity of quasiconformal Anosov flows,, Ergodic Theory and Dynamical Systems, 27 (2007), 1773.  doi: doi:10.1017/S0143385707000326.  Google Scholar

[4]

Y. Fang, Smooth rigidity of quasiconformal Anosov flows,, Ergodic Theory and Dynamical Systems, 24 (2004), 1937.  doi: doi:10.1017/S0143385704000264.  Google Scholar

[5]

Y. Fang, Thermodynamic invariants of Anosov flows and rigidity,, Discrete Contin. Dyn. Syst., 24 (2009), 1185.  doi: doi:10.3934/dcds.2009.24.1185.  Google Scholar

[6]

R. Feres and A. Katok, Invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows,, Ergodic Theory and Dynamical Systems, 9 (1989), 427.  doi: doi:10.1017/S0143385700005071.  Google Scholar

[7]

P. Foulon and B. Hasselblatt, Zygmund strong foliations,, Israel Journal of Mathematics, 138 (2003), 157.  doi: doi:10.1007/BF02783424.  Google Scholar

[8]

P. Foulon and B. Hasselblatt, Lipschitz continuous invariant forms for algebraic Anosov systems,, Journal of Modern Dynamics, 4 (2010), 571.   Google Scholar

[9]

M. Guysinsky, The theory of nonstationary normal forms,, Ergod. Theory and Dyn. Syst., 22 (2002), 845.  doi: doi:10.1017/S0143385702000421.  Google Scholar

[10]

M. Guysinsky and A. Katok, Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations,, Math. Research Letters, 5 (1998), 149.   Google Scholar

[11]

J. S. Hadamard, Sur l'itération et les solutions asymptotiques des équations différentielles,, Bulletin de la Société Mathématique de France, 29 (1901), 224.   Google Scholar

[12]

B. Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations,, Ergodic Theory and Dynamical Systems, 14 (1994), 645.   Google Scholar

[13]

U. Hamenstädt, Invariant two-forms for geodesic flows,, Mathematische Annalen, 101 (1995), 677.  doi: doi:10.1007/BF01446654.  Google Scholar

[14]

B. Hasselblatt, Hyperbolic dynamics,, in, 1A (2002), 239.   Google Scholar

[15]

S. Hurder and A. Katok, Differentiability, rigidity, and Godbillon-Vey classes for Anosov flows,, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 72 (1990), 5.  doi: doi:10.1007/BF02699130.  Google Scholar

[16]

M. Kanai, Differential-geometric studies on dynamics of geodesic and frame flows,, Japan. J. Math., 19 (1993), 1.   Google Scholar

[17]

A. Katok and B. Hasselblatt, "Introduction To The Modern Theory Of Dynamical Systems,", Encyclopedia of Mathematics and its Applications, 54 (1995).   Google Scholar

[18]

A. Katok and J. Lewis, Local rigidity for certain groups of toral automorphisms,, Israel J. Math., 75 (1991), 203.   Google Scholar

[19]

R. de la Llave and R. Obaya, Regularity of the composition operator in spaces of Hölder functions,, Discrete Contin. Dynam. Systems, 5 (1999), 157.   Google Scholar

[20]

G. P. Paternain, The longitudinal KAM-cocycle of a magnetic flow,, Math. Proc. Cambridge Philos. Soc., 139 (2005), 307.  doi: doi:10.1017/S0305004105008613.  Google Scholar

[21]

G. Paternain, On two noteworthy deformations of negatively curved Riemannian metrics,, Discrete Contin. Dynam. Systems, 5 (1999), 639.  doi: doi:10.3934/dcds.1999.5.639.  Google Scholar

[22]

G. Paternain and W. J. Merry, Stability of Anosov Hamiltonian structures,, , ().   Google Scholar

[23]

V. Sadovskaya, On uniformly quasiconformal Anosov systems,, Mathematical Research Letters, 12 (2005), 425.   Google Scholar

[24]

C. Yue, Quasiconformality in the geodesic flow of negatively curved manifolds,, Geom. Funct. Anal., 6 (1996), 740.  doi: doi:10.1007/BF02247120.  Google Scholar

[25]

A. S. Zygmund, "Trigonometric Series,", Cambridge University Press, (1959).   Google Scholar

show all references

References:
[1]

N. Dairbekov and G. Paternain, Longitudinal KAM cocycles and action spectra of magnetic flows,, Mathematics Research Letters, 12 (2005), 719.   Google Scholar

[2]

D. DeLatte, Nonstationary normal forms and cocycle invariants,, Random and Computational Dynamics, 1 (1995), 229.   Google Scholar

[3]

Y. Fang, On the rigidity of quasiconformal Anosov flows,, Ergodic Theory and Dynamical Systems, 27 (2007), 1773.  doi: doi:10.1017/S0143385707000326.  Google Scholar

[4]

Y. Fang, Smooth rigidity of quasiconformal Anosov flows,, Ergodic Theory and Dynamical Systems, 24 (2004), 1937.  doi: doi:10.1017/S0143385704000264.  Google Scholar

[5]

Y. Fang, Thermodynamic invariants of Anosov flows and rigidity,, Discrete Contin. Dyn. Syst., 24 (2009), 1185.  doi: doi:10.3934/dcds.2009.24.1185.  Google Scholar

[6]

R. Feres and A. Katok, Invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows,, Ergodic Theory and Dynamical Systems, 9 (1989), 427.  doi: doi:10.1017/S0143385700005071.  Google Scholar

[7]

P. Foulon and B. Hasselblatt, Zygmund strong foliations,, Israel Journal of Mathematics, 138 (2003), 157.  doi: doi:10.1007/BF02783424.  Google Scholar

[8]

P. Foulon and B. Hasselblatt, Lipschitz continuous invariant forms for algebraic Anosov systems,, Journal of Modern Dynamics, 4 (2010), 571.   Google Scholar

[9]

M. Guysinsky, The theory of nonstationary normal forms,, Ergod. Theory and Dyn. Syst., 22 (2002), 845.  doi: doi:10.1017/S0143385702000421.  Google Scholar

[10]

M. Guysinsky and A. Katok, Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations,, Math. Research Letters, 5 (1998), 149.   Google Scholar

[11]

J. S. Hadamard, Sur l'itération et les solutions asymptotiques des équations différentielles,, Bulletin de la Société Mathématique de France, 29 (1901), 224.   Google Scholar

[12]

B. Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations,, Ergodic Theory and Dynamical Systems, 14 (1994), 645.   Google Scholar

[13]

U. Hamenstädt, Invariant two-forms for geodesic flows,, Mathematische Annalen, 101 (1995), 677.  doi: doi:10.1007/BF01446654.  Google Scholar

[14]

B. Hasselblatt, Hyperbolic dynamics,, in, 1A (2002), 239.   Google Scholar

[15]

S. Hurder and A. Katok, Differentiability, rigidity, and Godbillon-Vey classes for Anosov flows,, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 72 (1990), 5.  doi: doi:10.1007/BF02699130.  Google Scholar

[16]

M. Kanai, Differential-geometric studies on dynamics of geodesic and frame flows,, Japan. J. Math., 19 (1993), 1.   Google Scholar

[17]

A. Katok and B. Hasselblatt, "Introduction To The Modern Theory Of Dynamical Systems,", Encyclopedia of Mathematics and its Applications, 54 (1995).   Google Scholar

[18]

A. Katok and J. Lewis, Local rigidity for certain groups of toral automorphisms,, Israel J. Math., 75 (1991), 203.   Google Scholar

[19]

R. de la Llave and R. Obaya, Regularity of the composition operator in spaces of Hölder functions,, Discrete Contin. Dynam. Systems, 5 (1999), 157.   Google Scholar

[20]

G. P. Paternain, The longitudinal KAM-cocycle of a magnetic flow,, Math. Proc. Cambridge Philos. Soc., 139 (2005), 307.  doi: doi:10.1017/S0305004105008613.  Google Scholar

[21]

G. Paternain, On two noteworthy deformations of negatively curved Riemannian metrics,, Discrete Contin. Dynam. Systems, 5 (1999), 639.  doi: doi:10.3934/dcds.1999.5.639.  Google Scholar

[22]

G. Paternain and W. J. Merry, Stability of Anosov Hamiltonian structures,, , ().   Google Scholar

[23]

V. Sadovskaya, On uniformly quasiconformal Anosov systems,, Mathematical Research Letters, 12 (2005), 425.   Google Scholar

[24]

C. Yue, Quasiconformality in the geodesic flow of negatively curved manifolds,, Geom. Funct. Anal., 6 (1996), 740.  doi: doi:10.1007/BF02247120.  Google Scholar

[25]

A. S. Zygmund, "Trigonometric Series,", Cambridge University Press, (1959).   Google Scholar

[1]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[4]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[7]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[8]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]