October  2010, 4(4): 733-739. doi: 10.3934/jmd.2010.4.733

Survival of infinitely many critical points for the Rabinowitz action functional

1. 

Department of Mathematical Sciences, Seoul National University, Kwanakgu Shinrim, San56-1 Seoul, South Korea

Received  June 2010 Revised  November 2010 Published  January 2011

In this paper, we show that if Rabinowitz Floer homology has infinite dimension, there exist infinitely many critical points of a Rabinowitz action functional even though it could be non-Morse. This result is proved by examining filtered Rabinowitz Floer homology.
Citation: Jungsoo Kang. Survival of infinitely many critical points for the Rabinowitz action functional. Journal of Modern Dynamics, 2010, 4 (4) : 733-739. doi: 10.3934/jmd.2010.4.733
References:
[1]

P. Albers and U. Frauenfelder, Leaf-wise intersections and Rabinowitz Floer homology, Journal of Topology and Analysis, 2 (2010), 77-98. doi: 10.1142/S1793525310000276.

[2]

P. Albers and U. Frauenfelder, Infinitely many leaf-wise intersection points on cotangent bundles, (2008), arXiv:0812.4426.

[3]

P. Albers and U. Frauenfelder, Spectral invariants in Rabinowitz Floer homology and global Hamiltonian perturbation, Journal of Modern dynamics, 4 (2010), 329-357.

[4]

P. Albers and U. Frauenfelder, A remark on a theorem by Ekeland-Hofer, (2010), to appear in Israel Journal of Mathematics, arXiv:1001.3386.

[5]

P. Albers and A. Momin, Cup-length estimates for leaf-wise intersections, Mathematical Proceedings of the Cambridge Philosophical Society, 149 (2010), 539-551. doi: 10.1017/S0305004110000435.

[6]

P. Albers and M. McLean, Non-displaceable contact embeddings and infinitely many leaf-wise intersections,, to appear in Journal of Symplectic Topology, (). 

[7]

A. Banyaga, Fixed points of symplectic maps, Invent. Math., 50 (1980), 215-229. doi: 10.1007/BF01390045.

[8]

K. Cieliebak and U. Frauenfelder, A Floer homology for exact contact embeddings, Pacific J. Math., 239 (2009), 251.316.2

[9]

K. Cieliebak and U. Frauenfelder, A. Oancea, Rabinowitz Floer homology and symplectic homology, to appear in Annales Scientifiques de LÉNS, (2009), arXiv:0903.0768.

[10]

D. L. Dragnev, Symplectic rigidity, symplectic fixed points and global perturbations of Hamiltonian systems, Comm. Pure Appl. Math., 61 (2008), 346-370. doi: 10.1002/cpa.20203.

[11]

I. Ekeland and H. Hofer, Two symplectic fixed-point theorems with applications to Hamiltonian dynamics, J. Math. Pures Appl., 68 (1989), 467-489 (1990).

[12]

V. L. Ginzburg, Coisotropic intersections, Duke Math. J., 140 (2007), 111-163. doi: 10.1215/S0012-7094-07-14014-6.

[13]

B. Gürel, Leafwise coisotropic intersections, Int. Math. Res. Not., (2010), 914-931.

[14]

J. Kang, Existence of leafwise intersection points in the unrestricted case, to appear in Israel Journal of Mathematics, (2009), arXiv:0910.2369

[15]

J. Kang, Generalized Rabinowitz Floer homology and coisotropic intersections, (2010), arXiv:1003.1009.

[16]

J. Kang, Künneth formula in Rabinowitz Floer homology, (2010), arXiv:1006.0810.

[17]

W. Merry, On the Rabinowitz Floer homology of twisted cotangent bundles, to appear in Calc. Var. Partial Differential Equations, (2010), arXiv:1002.0162.

[18]

J. Moser, A fixed point theorem in symplectic geometry, Acta Math., 141 (1978), 17-34. doi: 10.1007/BF02545741.

[19]

F. Ziltener, Coisotropic submanifolds, leafwise fixed points, and presymplectic embeddings, Journal of Symplectic Geom., 8 (2010), 95-118.

show all references

References:
[1]

P. Albers and U. Frauenfelder, Leaf-wise intersections and Rabinowitz Floer homology, Journal of Topology and Analysis, 2 (2010), 77-98. doi: 10.1142/S1793525310000276.

[2]

P. Albers and U. Frauenfelder, Infinitely many leaf-wise intersection points on cotangent bundles, (2008), arXiv:0812.4426.

[3]

P. Albers and U. Frauenfelder, Spectral invariants in Rabinowitz Floer homology and global Hamiltonian perturbation, Journal of Modern dynamics, 4 (2010), 329-357.

[4]

P. Albers and U. Frauenfelder, A remark on a theorem by Ekeland-Hofer, (2010), to appear in Israel Journal of Mathematics, arXiv:1001.3386.

[5]

P. Albers and A. Momin, Cup-length estimates for leaf-wise intersections, Mathematical Proceedings of the Cambridge Philosophical Society, 149 (2010), 539-551. doi: 10.1017/S0305004110000435.

[6]

P. Albers and M. McLean, Non-displaceable contact embeddings and infinitely many leaf-wise intersections,, to appear in Journal of Symplectic Topology, (). 

[7]

A. Banyaga, Fixed points of symplectic maps, Invent. Math., 50 (1980), 215-229. doi: 10.1007/BF01390045.

[8]

K. Cieliebak and U. Frauenfelder, A Floer homology for exact contact embeddings, Pacific J. Math., 239 (2009), 251.316.2

[9]

K. Cieliebak and U. Frauenfelder, A. Oancea, Rabinowitz Floer homology and symplectic homology, to appear in Annales Scientifiques de LÉNS, (2009), arXiv:0903.0768.

[10]

D. L. Dragnev, Symplectic rigidity, symplectic fixed points and global perturbations of Hamiltonian systems, Comm. Pure Appl. Math., 61 (2008), 346-370. doi: 10.1002/cpa.20203.

[11]

I. Ekeland and H. Hofer, Two symplectic fixed-point theorems with applications to Hamiltonian dynamics, J. Math. Pures Appl., 68 (1989), 467-489 (1990).

[12]

V. L. Ginzburg, Coisotropic intersections, Duke Math. J., 140 (2007), 111-163. doi: 10.1215/S0012-7094-07-14014-6.

[13]

B. Gürel, Leafwise coisotropic intersections, Int. Math. Res. Not., (2010), 914-931.

[14]

J. Kang, Existence of leafwise intersection points in the unrestricted case, to appear in Israel Journal of Mathematics, (2009), arXiv:0910.2369

[15]

J. Kang, Generalized Rabinowitz Floer homology and coisotropic intersections, (2010), arXiv:1003.1009.

[16]

J. Kang, Künneth formula in Rabinowitz Floer homology, (2010), arXiv:1006.0810.

[17]

W. Merry, On the Rabinowitz Floer homology of twisted cotangent bundles, to appear in Calc. Var. Partial Differential Equations, (2010), arXiv:1002.0162.

[18]

J. Moser, A fixed point theorem in symplectic geometry, Acta Math., 141 (1978), 17-34. doi: 10.1007/BF02545741.

[19]

F. Ziltener, Coisotropic submanifolds, leafwise fixed points, and presymplectic embeddings, Journal of Symplectic Geom., 8 (2010), 95-118.

[1]

Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, 2021, 29 (4) : 2553-2560. doi: 10.3934/era.2021001

[2]

Alexander Fauck, Will J. Merry, Jagna Wiśniewska. Computing the Rabinowitz Floer homology of tentacular hyperboloids. Journal of Modern Dynamics, 2021, 17: 353-399. doi: 10.3934/jmd.2021013

[3]

Peter Albers, Urs Frauenfelder. Spectral invariants in Rabinowitz-Floer homology and global Hamiltonian perturbations. Journal of Modern Dynamics, 2010, 4 (2) : 329-357. doi: 10.3934/jmd.2010.4.329

[4]

Sonja Hohloch. Transport, flux and growth of homoclinic Floer homology. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3587-3620. doi: 10.3934/dcds.2012.32.3587

[5]

Michael Usher. Floer homology in disk bundles and symplectically twisted geodesic flows. Journal of Modern Dynamics, 2009, 3 (1) : 61-101. doi: 10.3934/jmd.2009.3.61

[6]

Peter Albers, Urs Frauenfelder. Floer homology for negative line bundles and Reeb chords in prequantization spaces. Journal of Modern Dynamics, 2009, 3 (3) : 407-456. doi: 10.3934/jmd.2009.3.407

[7]

Radu Saghin. Note on homology of expanding foliations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 349-360. doi: 10.3934/dcdss.2009.2.349

[8]

Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249

[9]

Zhihong Xia. Homoclinic points and intersections of Lagrangian submanifold. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 243-253. doi: 10.3934/dcds.2000.6.243

[10]

Octav Cornea and Francois Lalonde. Cluster homology: An overview of the construction and results. Electronic Research Announcements, 2006, 12: 1-12.

[11]

Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451

[12]

Françoise Pène. Self-intersections of trajectories of the Lorentz process. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4781-4806. doi: 10.3934/dcds.2014.34.4781

[13]

Michael Herty, J.-P. Lebacque, S. Moutari. A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4 (4) : 813-826. doi: 10.3934/nhm.2009.4.813

[14]

Jianbo Wang. Remarks on 5-dimensional complete intersections. Electronic Research Announcements, 2014, 21: 28-40. doi: 10.3934/era.2014.21.28

[15]

Michael Herty, S. Moutari, M. Rascle. Optimization criteria for modelling intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2006, 1 (2) : 275-294. doi: 10.3934/nhm.2006.1.275

[16]

Sarah Day; William D. Kalies; Konstantin Mischaikow and Thomas Wanner. Probabilistic and numerical validation of homology computations for nodal domains. Electronic Research Announcements, 2007, 13: 60-73.

[17]

Al Momin. Contact homology of orbit complements and implied existence. Journal of Modern Dynamics, 2011, 5 (3) : 409-472. doi: 10.3934/jmd.2011.5.409

[18]

Mark Pollicott. Closed orbits and homology for $C^2$-flows. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 529-534. doi: 10.3934/dcds.1999.5.529

[19]

Vincenzo Ambrosio. Periodic solutions for a superlinear fractional problem without the Ambrosetti-Rabinowitz condition. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2265-2284. doi: 10.3934/dcds.2017099

[20]

Nicolas Augier, Ugo Boscain, Mario Sigalotti. Semi-conical eigenvalue intersections and the ensemble controllability problem for quantum systems. Mathematical Control and Related Fields, 2020, 10 (4) : 877-911. doi: 10.3934/mcrf.2020023

2020 Impact Factor: 0.848

Metrics

  • PDF downloads (101)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]