\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Survival of infinitely many critical points for the Rabinowitz action functional

Abstract Related Papers Cited by
  • In this paper, we show that if Rabinowitz Floer homology has infinite dimension, there exist infinitely many critical points of a Rabinowitz action functional even though it could be non-Morse. This result is proved by examining filtered Rabinowitz Floer homology.
    Mathematics Subject Classification: 53D40, 37J10, 58J05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Albers and U. Frauenfelder, Leaf-wise intersections and Rabinowitz Floer homology, Journal of Topology and Analysis, 2 (2010), 77-98.doi: 10.1142/S1793525310000276.

    [2]

    P. Albers and U. Frauenfelder, Infinitely many leaf-wise intersection points on cotangent bundles, (2008), arXiv:0812.4426.

    [3]

    P. Albers and U. Frauenfelder, Spectral invariants in Rabinowitz Floer homology and global Hamiltonian perturbation, Journal of Modern dynamics, 4 (2010), 329-357.

    [4]

    P. Albers and U. Frauenfelder, A remark on a theorem by Ekeland-Hofer, (2010), to appear in Israel Journal of Mathematics, arXiv:1001.3386.

    [5]

    P. Albers and A. Momin, Cup-length estimates for leaf-wise intersections, Mathematical Proceedings of the Cambridge Philosophical Society, 149 (2010), 539-551.doi: 10.1017/S0305004110000435.

    [6]

    P. Albers and M. McLeanNon-displaceable contact embeddings and infinitely many leaf-wise intersections, to appear in Journal of Symplectic Topology, arXiv:0904.3564.

    [7]

    A. Banyaga, Fixed points of symplectic maps, Invent. Math., 50 (1980), 215-229.doi: 10.1007/BF01390045.

    [8]

    K. Cieliebak and U. Frauenfelder, A Floer homology for exact contact embeddings, Pacific J. Math., 239 (2009), 251.316.2

    [9]

    K. Cieliebak and U. Frauenfelder, A. Oancea, Rabinowitz Floer homology and symplectic homology, to appear in Annales Scientifiques de LÉNS, (2009), arXiv:0903.0768.

    [10]

    D. L. Dragnev, Symplectic rigidity, symplectic fixed points and global perturbations of Hamiltonian systems, Comm. Pure Appl. Math., 61 (2008), 346-370.doi: 10.1002/cpa.20203.

    [11]

    I. Ekeland and H. Hofer, Two symplectic fixed-point theorems with applications to Hamiltonian dynamics, J. Math. Pures Appl., 68 (1989), 467-489 (1990).

    [12]

    V. L. Ginzburg, Coisotropic intersections, Duke Math. J., 140 (2007), 111-163.doi: 10.1215/S0012-7094-07-14014-6.

    [13]

    B. Gürel, Leafwise coisotropic intersections, Int. Math. Res. Not., (2010), 914-931.

    [14]

    J. Kang, Existence of leafwise intersection points in the unrestricted case, to appear in Israel Journal of Mathematics, (2009), arXiv:0910.2369

    [15]

    J. Kang, Generalized Rabinowitz Floer homology and coisotropic intersections, (2010), arXiv:1003.1009.

    [16]

    J. Kang, Künneth formula in Rabinowitz Floer homology, (2010), arXiv:1006.0810.

    [17]

    W. Merry, On the Rabinowitz Floer homology of twisted cotangent bundles, to appear in Calc. Var. Partial Differential Equations, (2010), arXiv:1002.0162.

    [18]

    J. Moser, A fixed point theorem in symplectic geometry, Acta Math., 141 (1978), 17-34.doi: 10.1007/BF02545741.

    [19]

    F. Ziltener, Coisotropic submanifolds, leafwise fixed points, and presymplectic embeddings, Journal of Symplectic Geom., 8 (2010), 95-118.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(115) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return