Citation: |
[1] |
A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture, Acta Math., 198 (2007), 1-56.doi: 10.1007/s11511-007-0012-1. |
[2] |
A. Beauville, Les familles stables de courbes elliptiques sur P1 admettant 4 fibres singulières, C. R. Acad. Sc. Paris 294, 657-660 (1982). |
[3] |
C. Birkenhake and H. Lange, "Complex Abelian Varieties," Second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 302. Springer-Verlag, Berlin, 2004. |
[4] |
A. Beauville, L'inégalité $p_g \geq 2q-4$ pour les surfaces de type général, (French) [Numerical inequalities for surfaces of general type] With an appendix by A. Beauville, Bull. Soc. Math. France, 110 (1982), 343-346. |
[5] |
F. Beukers and G. Heckman, Monodromy for the hypergeometric function $_nF_{n-1}$, Invent.\ Math., 95 (1989), 325-354.doi: 10.1007/BF01393900. |
[6] |
S. Bosch, W. Lütkebohmert and M. Raynaud, "Néron Models," Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 21, Springer-Verlag, Berlin, 1990. |
[7] |
I. Bouw and M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. Math. (2), 172 (2010), 139-185.doi: 10.4007/annals.2010.172.139. |
[8] |
B. Conrad and W. Stein, Component groups of purely toric quotients, Math. Res. Letters, 8 (2001), 745-766. |
[9] |
P. Deligne, Variétés de Shimura: Interprétation modulaire, et techniques de construction de modèles canoniques, (French) Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, 247-289, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979. |
[10] |
T. Fischbacher, Introducing LambdaTensor1.0, available on arXiv:hep-th/0208218, (2002). |
[11] |
G. Forni, Deviation of ergodic measures for area-preserving flows on surfaces of higher genus, Ann. of Math. (2), 155 (2002), 1-103.doi: 10.2307/3062150. |
[12] |
G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle, Handbook of Dynamical systems, Vol. 1B, 549-580, Elsevier B. V., Amsterdam, 2006. |
[13] |
G. Forni and C. Matheus, An example of a Teichmüller disk in genus $4$ with totally degenerate Kontsevich-Zorich spectrum, preprint arXiv:0810.0023, (2008). |
[14] |
J. Guardia, A family of arithmetic surfaces of genus 3, Pacific J. of Math., 212 (2003), 71-91.doi: 10.2140/pjm.2003.212.71. |
[15] |
E. Gutkin and C. Judge, Affine mappings of translation surfaces, Duke Math. J., 103 (2000), 191-212.doi: 10.1215/S0012-7094-00-10321-3. |
[16] |
J. Harris and I. Morrison, "Moduli of Curves," Graduate Texts in Mathematics, 187, Springer-Verlag, New York, 1998. |
[17] |
F. Herrlich, Teichmüller curves defined by characteristic origamis, The geometry of Riemann surfaces and abelian varieties, 133-144, Contemp. Math., 397, Amer. Math. Soc., Providence, RI, 2006. |
[18] |
F. Herrlich and G. Schmithüsen, An extraordinary origami curve, Math. Nachr., 1 (2008), 219-237.doi: 10.1002/mana.200510597. |
[19] |
J. de Jong and R. Noot, Jacobians with complex multiplication, Arithmetic algebraic geometry (Texel, 1989), 177-192, Progr. Math., 89, Birkhäuser Boston, Boston, MA, 1991. |
[20] |
K. Kodaira, On compact analytic surfaces III, Annals of Math., 78 (1963), 1-40.doi: 10.2307/1970500. |
[21] |
J. Kollár, Subadditivity of the Kodaira dimension: Fibers of general type, Algebraic geometry, Sendai, 1985, 361-398, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987. |
[22] |
I. Kra, The Carathéodory metric on abelian Teichmüller disks, J. Analyse Math., 40 (1981), 129-143 (1982). |
[23] |
A. Kuribayashi and K. Komiya, On Weierstrass points and automorphisms of curves of genus three, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), 253-299, Lecture Notes in Math., 732, Springer, Berlin, 1979. |
[24] |
H. Masur, On a class of geodesics in Teichmüller space, Annals of Math. (2), 102 (1975), 205-221.doi: 10.2307/1971031. |
[25] |
H. Masur and S. Tabachnikov, Rational billiards and flat structures, in: Handbook of dynamical systems, vol. 1A, 1015-1089, North-Holland, Amsterdam, 2002. |
[26] |
C. McMullen, Billiards and Teichmüller curves on Hilbert modular sufaces, J. Amer. Math. Soc., 16 (2003), 857-885 (electronic).doi: 10.1090/S0894-0347-03-00432-6. |
[27] |
M. Möller, Maximally irregularly fibred surfaces of general type, Manusc. Math., 116 (2005), 71-92.doi: 10.1007/s00229-004-0517-2. |
[28] |
M. Möller, Variations of Hodge structures of Teichmüller curves, J. Amer. Math. Soc., 19 (2006), 327-344 (electronic).doi: 10.1090/S0894-0347-05-00512-6. |
[29] |
M. Möller, Periodic points on Veech surfaces and the Mordell-Weil group over a Teich-müller curve, Invent. Math., 165 (2006), 633-649.doi: 10.1007/s00222-006-0510-3. |
[30] |
B. Moonen, Linearity properties of Shimura varieties I., J. Alg. Geom., 7 (1998), 539-567. |
[31] |
D. Mumford, A note of Shimura's paper: Discontinuous groups and Abelian varieties, Math. Ann., 181 (1969), 345-351.doi: 10.1007/BF01350672. |
[32] |
F. Oort and J. Steenbrink, The local Torelli problem for algebraic curves, Journées de Géometrie Algébrique d'Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, pp. 157-204, Sijt-hoff & Noordhoff, Alphen aan den Rijn-Germantown, Md., 1980. |
[33] |
I. Satake, "Algebraic Structures of Symmetric Domains," Kanô Memorial Lectures, 4. Iwanami Shoten, Tokyo; Princeton University Press, Princeton, N.J., 1980. xvi+321 pp. |
[34] |
G. Shimura, "Introduction to the Arithmetic Theory of Automorphic Functios," Kanô Memorial Lectures, No. 1. Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. xiv+267 pp. |
[35] |
S.-L. Tan, Y. Tu and A. Zamora, On complex surfaces with $5$ or $6$ semistable singular fibres over $\mathbbP^1$, Math. Z., 249 (2005), 427-438.doi: 10.1007/s00209-004-0706-4. |
[36] |
W. Veech, The Teichmüller geodesic flow, Ann. Math. (2), 124 (1986), 441-530.doi: 10.2307/2007091. |
[37] |
W. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 533-583.doi: 10.1007/BF01388890. |
[38] |
E. Viehweg and K. Zuo, A characterization of Shimura curves in the moduli stack of abelian varieties, J. of Diff. Geometry, 66 (2004), 233-287. |
[39] |
E. Viehweg and K. Zuo, Numerical bounds for families of curves or of certain higher-dimensional manifolds, J. Alg. Geom., 15 (2006), 771-791. |
[40] |
J. Wolfart, Werte hypergeometrischer Funktionen, (German) [Values of hypergeometric functions], Invent. Math., 92 (1988), 187-216.doi: 10.1007/BF01393999. |
[41] |
G. Xiao, "Surfaces Fibrées en Courbes de Genre Deux," (French) [Surfaces fibered by curves of genus two] Lecture Notes in Mathematics, 1137, Springer-Verlag, Berlin, 1985. |
[42] |
A. Zorich, Flat surfaces, Frontiers in number theory, physics, and geometry I, 437-583, Springer, Berlin, 2006. |