January  2011, 5(1): 185-202. doi: 10.3934/jmd.2011.5.185

Tori with hyperbolic dynamics in 3-manifolds

1. 

IMERL-Facultad de Ingeniería, Universidad de la República, ulio Herrera y Reissig 565, CC 30, 11300 Montevideo, Uruguay

2. 

IMERL-Facultad de Ingeniería, Universidad de la República, CC 30 Montevideo, Uruguay

Received  August 2010 Revised  February 2011 Published  April 2011

Let $M$ be a closed orientable irreducible $3$-dimensional manifold. An embedded $2$-torus $\mathbb{T}$ is an Anosov torus if there exists a diffeomorphism $f$ over $M$ for which $\T$ is $f$-invariant and $f_\#|_\mathbb{T}:\pi_1(\mathbb{T})\to \pi_1(\mathbb{T})$ is hyperbolic. We prove that only few irreducible $3$-manifolds admit Anosov tori: (1) the $3$-torus $\mathbb{T}^3$; (2) the mapping torus of $-\Id$; and (3) the mapping tori of hyperbolic automorphisms of $\mathbb{T}^2$.
   This has consequences for instance in the context of partially hyperbolic dynamics of $3$-manifolds: if there is an invariant foliation $\mathcal{F}^{cu}$ tangent to the center-unstable bundle $E^c\oplus E^u$, then $\mathcal{F}^{cu}$ has no compact leaves [21]. This has led to the first example of a non-dynamically coherent partially hyperbolic diffeomorphism with one-dimensional center bundle [21].
Citation: Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Tori with hyperbolic dynamics in 3-manifolds. Journal of Modern Dynamics, 2011, 5 (1) : 185-202. doi: 10.3934/jmd.2011.5.185
References:
[1]

M. Brin, D. Burago and S. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group,, Modern Dynamical Systems and Applications, (2004), 307.   Google Scholar

[2]

M. Brin, D. Burago and S. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the $3$-torus,, J. Mod. Dyn., 3 (2009), 1.  doi: doi:10.3934/jmd.2009.3.1.  Google Scholar

[3]

M. Brin and Ya Pesin, Partially hyperbolic dynamical systems,, Math. USSR Izv., 8 (1974), 177.   Google Scholar

[4]

D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups,, J. Mod. Dyn., 2 (2008), 541.  doi: doi:10.3934/jmd.2008.2.541.  Google Scholar

[5]

D. Calegary, "Foliations and the Geometry of 3-Manifolds,'', Oxford Mathematical Monographs, (2007).   Google Scholar

[6]

D. Calegary, M. Freedman and K. Walker, Positivity of the universal pairing in 3-dimensions,, Jounal of the AMS, 23 (2010), 107.   Google Scholar

[7]

D. Epstein, Periodic flows on 3-manifolds,, Ann. Math., 95 (1972), 66.   Google Scholar

[8]

J. Franks, Anosov diffeomorphisms,, 1970 Global Analysis (Proc. Sympos. Pure Math., (1968), 61.   Google Scholar

[9]

A. Hammerlindl, "Leaf Conjugacies of the Torus,'', Phd Thesis, (2009).   Google Scholar

[10]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,'', Lecture Notes in Math. {\bf 583}, 583 (1977).   Google Scholar

[11]

A. Hatcher, "Notes on Basic 3-Manifold Topology,'', author's webpage at Cornell Math. Dep. \url{http://www.math.cornell.edu/ hatcher/3M/3M.pdf}, ().   Google Scholar

[12]

W. Jaco and P. Shalen, "Seifert Fibered Spaces in 3-Manifolds,'', Memoirs AMS, 21 (1979).   Google Scholar

[13]

K. Johannson, "Homotopy Equivalences of 3-Manifolds with Boundaries,'', Lecture Notes in Math. {\bf 761}, 761 (1977).   Google Scholar

[14]

H. Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten,, Jahresbericht der Deutschen Mathematiker-Vereinigung, 38 (1929), 248.   Google Scholar

[15]

J. Milnor, A unique decomposition theorem for 3-manifolds,, Amer. J. of Math., 84 (1962), 1.  doi: doi:10.2307/2372800.  Google Scholar

[16]

H. Rosenberg, Foliations by planes,, Topology, 7 (1968), 131.  doi: doi:10.1016/0040-9383(68)90021-9.  Google Scholar

[17]

R. Roussarie, Sur les feuilletages des variétés de dimension trois,, (French), 21 (1971), 13.   Google Scholar

[18]

F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, "A Survey of Partially Hyperbolic Dynamics,'', Partially hyperbolic dynamics, (2007), 35.   Google Scholar

[19]

F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle,, Invent. Math., 172 (2008), 353.  doi: doi:10.1007/s00222-007-0100-z.  Google Scholar

[20]

F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, Partial hyperbolicity and ergodicity in dimension three,, J. Mod. Dyn., 2 (2008), 187.   Google Scholar

[21]

F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, A non-dynamically coherent example in $\mathbbT^3$,, in preparation, (2009).   Google Scholar

[22]

F. Waldhausen, Eine Klasse von $3$-dimensionalen Mannigfaltigkeiten. I, II,, Invent. Math., 3 (1967), 308.   Google Scholar

show all references

References:
[1]

M. Brin, D. Burago and S. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group,, Modern Dynamical Systems and Applications, (2004), 307.   Google Scholar

[2]

M. Brin, D. Burago and S. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the $3$-torus,, J. Mod. Dyn., 3 (2009), 1.  doi: doi:10.3934/jmd.2009.3.1.  Google Scholar

[3]

M. Brin and Ya Pesin, Partially hyperbolic dynamical systems,, Math. USSR Izv., 8 (1974), 177.   Google Scholar

[4]

D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups,, J. Mod. Dyn., 2 (2008), 541.  doi: doi:10.3934/jmd.2008.2.541.  Google Scholar

[5]

D. Calegary, "Foliations and the Geometry of 3-Manifolds,'', Oxford Mathematical Monographs, (2007).   Google Scholar

[6]

D. Calegary, M. Freedman and K. Walker, Positivity of the universal pairing in 3-dimensions,, Jounal of the AMS, 23 (2010), 107.   Google Scholar

[7]

D. Epstein, Periodic flows on 3-manifolds,, Ann. Math., 95 (1972), 66.   Google Scholar

[8]

J. Franks, Anosov diffeomorphisms,, 1970 Global Analysis (Proc. Sympos. Pure Math., (1968), 61.   Google Scholar

[9]

A. Hammerlindl, "Leaf Conjugacies of the Torus,'', Phd Thesis, (2009).   Google Scholar

[10]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,'', Lecture Notes in Math. {\bf 583}, 583 (1977).   Google Scholar

[11]

A. Hatcher, "Notes on Basic 3-Manifold Topology,'', author's webpage at Cornell Math. Dep. \url{http://www.math.cornell.edu/ hatcher/3M/3M.pdf}, ().   Google Scholar

[12]

W. Jaco and P. Shalen, "Seifert Fibered Spaces in 3-Manifolds,'', Memoirs AMS, 21 (1979).   Google Scholar

[13]

K. Johannson, "Homotopy Equivalences of 3-Manifolds with Boundaries,'', Lecture Notes in Math. {\bf 761}, 761 (1977).   Google Scholar

[14]

H. Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten,, Jahresbericht der Deutschen Mathematiker-Vereinigung, 38 (1929), 248.   Google Scholar

[15]

J. Milnor, A unique decomposition theorem for 3-manifolds,, Amer. J. of Math., 84 (1962), 1.  doi: doi:10.2307/2372800.  Google Scholar

[16]

H. Rosenberg, Foliations by planes,, Topology, 7 (1968), 131.  doi: doi:10.1016/0040-9383(68)90021-9.  Google Scholar

[17]

R. Roussarie, Sur les feuilletages des variétés de dimension trois,, (French), 21 (1971), 13.   Google Scholar

[18]

F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, "A Survey of Partially Hyperbolic Dynamics,'', Partially hyperbolic dynamics, (2007), 35.   Google Scholar

[19]

F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle,, Invent. Math., 172 (2008), 353.  doi: doi:10.1007/s00222-007-0100-z.  Google Scholar

[20]

F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, Partial hyperbolicity and ergodicity in dimension three,, J. Mod. Dyn., 2 (2008), 187.   Google Scholar

[21]

F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, A non-dynamically coherent example in $\mathbbT^3$,, in preparation, (2009).   Google Scholar

[22]

F. Waldhausen, Eine Klasse von $3$-dimensionalen Mannigfaltigkeiten. I, II,, Invent. Math., 3 (1967), 308.   Google Scholar

[1]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[2]

Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005

[3]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[4]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[5]

Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050

[6]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[7]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[8]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[9]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (11)

[Back to Top]