April  2011, 5(2): 203-235. doi: 10.3934/jmd.2011.5.203

Local rigidity of homogeneous parabolic actions: I. A model case

1. 

Department of Mathematics, Rice University, 6100 Main St., Houston, TX 77005, United States

2. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802

Received  March 2010 Revised  April 2011 Published  July 2011

We show a weak form of local differentiable rigidity for the rank $2$ abelian action of upper unipotents on $SL(2,R)$ $\times$ $SL(2,R)$ $/\Gamma$. Namely, for a $2$-parameter family of sufficiently small perturbations of the action, satisfying certain transversality conditions, there exists a parameter for which the perturbation is smoothly conjugate to the action up to an automorphism of the acting group. This weak form of rigidity for the parabolic action in question is optimal since the action lives in a family of dynamically different actions. The method of proof is based on a KAM-type iteration and we discuss in the paper several other potential applications of our approach.
Citation: Danijela Damjanovic, Anatole Katok. Local rigidity of homogeneous parabolic actions: I. A model case. Journal of Modern Dynamics, 2011, 5 (2) : 203-235. doi: 10.3934/jmd.2011.5.203
References:
[1]

E. J. Benveniste, Rigidity of isometric lattice actions on compact Riemannian manifolds, Geom. Funct. Anal., 10 (2000), 516-542. doi: 10.1007/PL00001627.

[2]

D. Damjanović, Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions, J. Mod. Dyn., 1 (2007), 665-688. doi: 10.3934/jmd.2007.1.665.

[3]

D. Damjanović and A. Katok, Local rigidity of restrictions of Weyl chamber flows, C. R. Math. Acad. Sci. Paris, 344 (2007), 503-508.

[4]

D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions. II. The geometric method and restrictions of Weyl chamber flows on $SL(n, R)$$/\Gamma$, Int. Math. Res. Notes, 2010. doi: 10.1093/imrn/rnq252.

[5]

D. Damjanović and A. Katok, Local rigidity of actions of higher-rank abelian groups and KAM method, Electron. Res. Announc. Amer. Math. Soc., 10 (2004), 142-154.

[6]

D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions I. KAM method and $\Z^k$ actions on the torus, Ann. of Math. (2), 172 (2010), 1805-1858.

[7]

D. Fisher, First cohomology and local rigidity of group actions,, Ann. of Math., (). 

[8]

L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Math. J., 119 (2003), 465-526.

[9]

R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 65-222.

[10]

B. Hasselblatt and A. Katok, Principal structures, in "Handbook in Dynamical Systems," 1A, North-Holland, Amsterdam, (2002), 1-203.

[11]

A. Katok and R. Spatzier, Differential rigidity of Anosov actions of higher-rank abelian groups and algebraic lattice actions, Proc. Steklov Inst. Math., 216 (1997), 287-314.

[12]

D. Mieczkowski, The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory, J. Mod. Dyn., 1 (2007), 61-92. doi: 10.3934/jmd.2007.1.61.

[13]

D. Mieczkowski, "The Cohomological Equation and Representation Theory," Ph.D thesis, The Pennsylvania State University, 2006.

[14]

J. Moser, On commuting circle mappings and simoultaneous Diophantine approximations, Math. Z., 205 (1990), 105-121. doi: 10.1007/BF02571227.

[15]

F. Ramirez, Cocycles over higher-rank abelian actions on quotients of semisimple Lie groups, J. Mod. Dyn., 3 (2009), 335-357. doi: 10.3934/jmd.2009.3.335.

[16]

E. Zehnder, Generalized implicit-function theorems with applications to some small divisor problems. I, Comm. Pure Appl. Math., 28 (1975), 91-140.

[17]

Z. Wang, Local rigidity of partially hyperbolic actions, J. Mod. Dyn., 4 (2010), 271-327. doi: 10.3934/jmd.2010.4.271.

[18]

Z. Wang, New cases of differentiable rigidity for partially hyperbolic actions: Symplectic groups and resonance directions, J. Mod. Dyn., 4 (2010), 585-608. doi: 10.3934/jmd.2010.4.585.

show all references

References:
[1]

E. J. Benveniste, Rigidity of isometric lattice actions on compact Riemannian manifolds, Geom. Funct. Anal., 10 (2000), 516-542. doi: 10.1007/PL00001627.

[2]

D. Damjanović, Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions, J. Mod. Dyn., 1 (2007), 665-688. doi: 10.3934/jmd.2007.1.665.

[3]

D. Damjanović and A. Katok, Local rigidity of restrictions of Weyl chamber flows, C. R. Math. Acad. Sci. Paris, 344 (2007), 503-508.

[4]

D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions. II. The geometric method and restrictions of Weyl chamber flows on $SL(n, R)$$/\Gamma$, Int. Math. Res. Notes, 2010. doi: 10.1093/imrn/rnq252.

[5]

D. Damjanović and A. Katok, Local rigidity of actions of higher-rank abelian groups and KAM method, Electron. Res. Announc. Amer. Math. Soc., 10 (2004), 142-154.

[6]

D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions I. KAM method and $\Z^k$ actions on the torus, Ann. of Math. (2), 172 (2010), 1805-1858.

[7]

D. Fisher, First cohomology and local rigidity of group actions,, Ann. of Math., (). 

[8]

L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Math. J., 119 (2003), 465-526.

[9]

R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 65-222.

[10]

B. Hasselblatt and A. Katok, Principal structures, in "Handbook in Dynamical Systems," 1A, North-Holland, Amsterdam, (2002), 1-203.

[11]

A. Katok and R. Spatzier, Differential rigidity of Anosov actions of higher-rank abelian groups and algebraic lattice actions, Proc. Steklov Inst. Math., 216 (1997), 287-314.

[12]

D. Mieczkowski, The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory, J. Mod. Dyn., 1 (2007), 61-92. doi: 10.3934/jmd.2007.1.61.

[13]

D. Mieczkowski, "The Cohomological Equation and Representation Theory," Ph.D thesis, The Pennsylvania State University, 2006.

[14]

J. Moser, On commuting circle mappings and simoultaneous Diophantine approximations, Math. Z., 205 (1990), 105-121. doi: 10.1007/BF02571227.

[15]

F. Ramirez, Cocycles over higher-rank abelian actions on quotients of semisimple Lie groups, J. Mod. Dyn., 3 (2009), 335-357. doi: 10.3934/jmd.2009.3.335.

[16]

E. Zehnder, Generalized implicit-function theorems with applications to some small divisor problems. I, Comm. Pure Appl. Math., 28 (1975), 91-140.

[17]

Z. Wang, Local rigidity of partially hyperbolic actions, J. Mod. Dyn., 4 (2010), 271-327. doi: 10.3934/jmd.2010.4.271.

[18]

Z. Wang, New cases of differentiable rigidity for partially hyperbolic actions: Symplectic groups and resonance directions, J. Mod. Dyn., 4 (2010), 585-608. doi: 10.3934/jmd.2010.4.585.

[1]

Danijela Damjanovic and Anatole Katok. Local rigidity of actions of higher rank abelian groups and KAM method. Electronic Research Announcements, 2004, 10: 142-154.

[2]

Masayuki Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups. Journal of Modern Dynamics, 2015, 9: 191-201. doi: 10.3934/jmd.2015.9.191

[3]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271

[4]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Electronic Research Announcements, 2010, 17: 68-79. doi: 10.3934/era.2010.17.68

[5]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[6]

Woochul Jung, Keonhee Lee, Carlos Morales, Jumi Oh. Rigidity of random group actions. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6845-6854. doi: 10.3934/dcds.2020130

[7]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[8]

A. Katok and R. J. Spatzier. Nonstationary normal forms and rigidity of group actions. Electronic Research Announcements, 1996, 2: 124-133.

[9]

Danijela Damjanović, James Tanis. Cocycle rigidity and splitting for some discrete parabolic actions. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5211-5227. doi: 10.3934/dcds.2014.34.5211

[10]

James Tanis, Zhenqi Jenny Wang. Cohomological equation and cocycle rigidity of discrete parabolic actions. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3969-4000. doi: 10.3934/dcds.2019160

[11]

Manfred Einsiedler and Elon Lindenstrauss. Rigidity properties of \zd-actions on tori and solenoids. Electronic Research Announcements, 2003, 9: 99-110.

[12]

Andrei Török. Rigidity of partially hyperbolic actions of property (T) groups. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 193-208. doi: 10.3934/dcds.2003.9.193

[13]

Federico Rodriguez Hertz. Global rigidity of certain Abelian actions by toral automorphisms. Journal of Modern Dynamics, 2007, 1 (3) : 425-442. doi: 10.3934/jmd.2007.1.425

[14]

Danijela Damjanovic, James Tanis, Zhenqi Jenny Wang. On globally hypoelliptic abelian actions and their existence on homogeneous spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6747-6766. doi: 10.3934/dcds.2020164

[15]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[16]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[17]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[18]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[19]

Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207

[20]

Xuanji Hou, Lei Jiao. On local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3125-3152. doi: 10.3934/dcds.2016.36.3125

2020 Impact Factor: 0.848

Metrics

  • PDF downloads (87)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]