April  2011, 5(2): 237-254. doi: 10.3934/jmd.2011.5.237

Measures invariant under horospherical subgroups in positive characteristic

1. 

Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, United States

Received  July 2010 Revised  February 2011 Published  July 2011

We prove measure rigidity for the action of maximal horospherical subgroups on homogeneous spaces over a field of positive characteristic. In the case when the lattice is uniform we prove the action of any horospherical subgroup is uniquely ergodic.
Citation: Amir Mohammadi. Measures invariant under horospherical subgroups in positive characteristic. Journal of Modern Dynamics, 2011, 5 (2) : 237-254. doi: 10.3934/jmd.2011.5.237
References:
[1]

H. Behr, Finite presentability of arithmetic groups over global function fields,, Groups-St. Andrews 1985, 30 (1987), 23. doi: 10.1017/S0013091500017934. Google Scholar

[2]

Y. Benoist and H. Oh, Effective equidistribution of $S$-arithmetic points on symmetric varieties,, Preprint., (). Google Scholar

[3]

I. N. Bernstein and A. V. Zelevinski, Representation of the group $GL(n, F)$ where $F$ is a non-archimedean local field,, Russ. Math. Surv., 313 (1976), 1. Google Scholar

[4]

A. Borel, "Introduction aux Groupes Arithmétiques,", Publications de l'Institut de Mathématique de l'Université de Strasbourg, (1341). Google Scholar

[5]

A. Borel, "Linear Algebraic Groups,", Second edition, (1991). Google Scholar

[6]

A. Borel and T. A. Springer, Rationality properties of linear algebraic groups. II,, Tôhoku Math. J., 20 (1968), 443. doi: 10.2748/tmj/1178243073. Google Scholar

[7]

M. Burger, Horocycle flow on geometrically finite surfaces,, Duke Math. J., 61 (1990), 779. doi: 10.1215/S0012-7094-90-06129-0. Google Scholar

[8]

M. Burger and P. Sarnak, Ramanujan duals. II,, Invent. Math., 106 (1991), 1. doi: 10.1007/BF01243900. Google Scholar

[9]

L. Clozel, Démonstration de la conjecture $\tau$,, (French) [Proof of the $\tau$-conjecture], 151 (2003), 297. doi: 10.1007/s00222-002-0253-8. Google Scholar

[10]

B. Conrad, O. Gabber and G. Prasad, "Pseudo-Reductive Groups,", New Mathematical Monographs, 17 (2010). Google Scholar

[11]

S. G. Dani, On invariant measures, minimal sets and a lemma of Margulis,, Invent. Math., 51 (1979), 239. doi: 10.1007/BF01389917. Google Scholar

[12]

S. G. Dani, Invariant measures and minimal sets of horospherical flows,, Invent. Math., 64 (1981), 357. doi: 10.1007/BF01389173. Google Scholar

[13]

S. G. Dani, Orbits of horospherical flows,, Duke Math. J., 53 (1986), 177. doi: 10.1215/S0012-7094-86-05312-3. Google Scholar

[14]

S. G. Dani, G. A. Margulis, Values of quadratic forms at primitive integral points,, Invent. Math., 98 (1989), 405. doi: 10.1007/BF01388860. Google Scholar

[15]

S. G. Dani and G. A. Margulis, Orbit closures of generic unipotent flows on homogeneous spaces of $SL(3,R)$,, Math. Ann., 286 (1990), 101. doi: 10.1007/BF01453567. Google Scholar

[16]

S. G. Dani, G. A. Margulis, Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces,, Proc. Indian Acad. Sci. Math. Sci., 101 (1991), 1. doi: 10.1007/BF02872005. Google Scholar

[17]

S. G. Dani and G. A. Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms,, I. M. Gelfand Seminar, 16 (1993), 91. Google Scholar

[18]

M. Einsiedler and A. Ghosh, Rigidity of measures invariant under semisimple groups in positive characteristic,, Proc. Lond. Math. Soc. (3), 100 (2010), 249. doi: 10.1112/plms/pdp029. Google Scholar

[19]

M. Einsiedler and A. Mohammadi, A joining classification and a special case of Raghunathan's conjecture in positive characteristic, (with an appendix by Kevin Wortman),, To appear in J. d'Analyse., (). Google Scholar

[20]

A. Ghosh, Metric Diophantine approximation over a local field of positive characteristic,, J. Number Theory, 124 (2007), 454. doi: 10.1016/j.jnt.2006.10.009. Google Scholar

[21]

A. Gorodnik and H. Oh, Rational points on homogeneous varieties and Equidistribution of Adelic periods, (with appendix by Mikhail Borovoi),, Preprint., (). Google Scholar

[22]

G. Harder, Minkowskische Reduktionstheorie über Funktionenkörpern, (German),, Invent. Math., 7 (1969), 33. doi: 10.1007/BF01418773. Google Scholar

[23]

D. Kleinbock and G. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces,, Amer. Math. Soc. Transl. Ser. 2, 171 (1996), 144. Google Scholar

[24]

D. Kleinbock and G. Tomanov, Flows on S-arithmetic homogeneous spaces and applications to metric Diophantine approximation,, Comm. Math. Helv., 82 (2007), 519. doi: 10.4171/CMH/102. Google Scholar

[25]

G. A. Margulis, Indefinite quadratic forms and unipotent flows on homogeneous spaces,, Proceed of, 23 (1989), 399. Google Scholar

[26]

G. A. Margulis, On the action of unipotent groups in the space of lattices,, In Gelfand, (1975), 365. Google Scholar

[27]

G. A. Margulis, Formes quadratiques indefinies et flots unipotents sur les espaces homogènes, [Indefinite quadratic forms and unipotent flows on homogeneous spaces],, C.R. Acad. Sci., 304 (1987), 249. Google Scholar

[28]

G. A. Margulis, "On Some Aspects of the Theory of Anosov Systems,", With a survey by Richard Sharp: Periodic orbits of hyperbolic flows. Translated from the Russian by Valentina Vladimirovna Szulikowska. Springer Monographs in Mathematics. Springer-Verlag, (2004). Google Scholar

[29]

G. A. Margulis and G. Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces,, Invent. Math., 116 (1994), 347. doi: 10.1007/BF01231565. Google Scholar

[30]

A. Mohammadi, Unipotent flows and isotropic quadratic forms in positive characteristic,, To appear in IMRN., (). Google Scholar

[31]

H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants,, Duke Math. J., 113 (2002), 133. doi: 10.1215/S0012-7094-02-11314-3. Google Scholar

[32]

M. Ratner, Horocycle flows: Joining and rigidity of products,, Ann. Math. (2), 118 (1983), 277. doi: 10.2307/2007030. Google Scholar

[33]

M. Ratner, Strict measure rigidity for unipotent subgroups of solvable groups,, Invent. Math., 101 (1990), 449. doi: 10.1007/BF01231511. Google Scholar

[34]

M. Ratner, On measure rigidity of unipotent subgroups of semi-simple groups,, Acta Math., 165 (1990), 229. doi: 10.1007/BF02391906. Google Scholar

[35]

M. Rather, Raghunathan topological conjecture and distributions of unipotent flows,, Duke Math. J., 63 (1991), 235. Google Scholar

[36]

M. Ratner, On Raghunathan's measure conjecture,, Ann. of Math. (2), 134 (1992), 545. Google Scholar

[37]

M. Ratner, Raghunathan's conjectures for Cartesian products of real and $p$-adic Lie groups,, Duke Math. J., 77 (1995), 275. doi: 10.1215/S0012-7094-95-07710-2. Google Scholar

[38]

N. Shah, Uniformly distributed orbits of certain flows on homogeneous spaces,, Math. Ann., 289 (1991), 315. doi: 10.1007/BF01446574. Google Scholar

[39]

T. A. Springer, Reduction theory over global fields,, K. G. Ramanathan memorial issue. Proc. Indian Acad. Sci. Math. Sci., 104 (1994), 207. doi: 10.1007/BF02830884. Google Scholar

[40]

J. Tits, Reductive groups over $p$-adic fields,, Automorphic forms, (1977), 29. Google Scholar

[41]

G. Tomanov, Orbits on homogeneous spaces of arithmetic origin and approximations,, Analysis on homogeneous spaces and representation theory of Lie groups, 26 (1997), 265. Google Scholar

show all references

References:
[1]

H. Behr, Finite presentability of arithmetic groups over global function fields,, Groups-St. Andrews 1985, 30 (1987), 23. doi: 10.1017/S0013091500017934. Google Scholar

[2]

Y. Benoist and H. Oh, Effective equidistribution of $S$-arithmetic points on symmetric varieties,, Preprint., (). Google Scholar

[3]

I. N. Bernstein and A. V. Zelevinski, Representation of the group $GL(n, F)$ where $F$ is a non-archimedean local field,, Russ. Math. Surv., 313 (1976), 1. Google Scholar

[4]

A. Borel, "Introduction aux Groupes Arithmétiques,", Publications de l'Institut de Mathématique de l'Université de Strasbourg, (1341). Google Scholar

[5]

A. Borel, "Linear Algebraic Groups,", Second edition, (1991). Google Scholar

[6]

A. Borel and T. A. Springer, Rationality properties of linear algebraic groups. II,, Tôhoku Math. J., 20 (1968), 443. doi: 10.2748/tmj/1178243073. Google Scholar

[7]

M. Burger, Horocycle flow on geometrically finite surfaces,, Duke Math. J., 61 (1990), 779. doi: 10.1215/S0012-7094-90-06129-0. Google Scholar

[8]

M. Burger and P. Sarnak, Ramanujan duals. II,, Invent. Math., 106 (1991), 1. doi: 10.1007/BF01243900. Google Scholar

[9]

L. Clozel, Démonstration de la conjecture $\tau$,, (French) [Proof of the $\tau$-conjecture], 151 (2003), 297. doi: 10.1007/s00222-002-0253-8. Google Scholar

[10]

B. Conrad, O. Gabber and G. Prasad, "Pseudo-Reductive Groups,", New Mathematical Monographs, 17 (2010). Google Scholar

[11]

S. G. Dani, On invariant measures, minimal sets and a lemma of Margulis,, Invent. Math., 51 (1979), 239. doi: 10.1007/BF01389917. Google Scholar

[12]

S. G. Dani, Invariant measures and minimal sets of horospherical flows,, Invent. Math., 64 (1981), 357. doi: 10.1007/BF01389173. Google Scholar

[13]

S. G. Dani, Orbits of horospherical flows,, Duke Math. J., 53 (1986), 177. doi: 10.1215/S0012-7094-86-05312-3. Google Scholar

[14]

S. G. Dani, G. A. Margulis, Values of quadratic forms at primitive integral points,, Invent. Math., 98 (1989), 405. doi: 10.1007/BF01388860. Google Scholar

[15]

S. G. Dani and G. A. Margulis, Orbit closures of generic unipotent flows on homogeneous spaces of $SL(3,R)$,, Math. Ann., 286 (1990), 101. doi: 10.1007/BF01453567. Google Scholar

[16]

S. G. Dani, G. A. Margulis, Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces,, Proc. Indian Acad. Sci. Math. Sci., 101 (1991), 1. doi: 10.1007/BF02872005. Google Scholar

[17]

S. G. Dani and G. A. Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms,, I. M. Gelfand Seminar, 16 (1993), 91. Google Scholar

[18]

M. Einsiedler and A. Ghosh, Rigidity of measures invariant under semisimple groups in positive characteristic,, Proc. Lond. Math. Soc. (3), 100 (2010), 249. doi: 10.1112/plms/pdp029. Google Scholar

[19]

M. Einsiedler and A. Mohammadi, A joining classification and a special case of Raghunathan's conjecture in positive characteristic, (with an appendix by Kevin Wortman),, To appear in J. d'Analyse., (). Google Scholar

[20]

A. Ghosh, Metric Diophantine approximation over a local field of positive characteristic,, J. Number Theory, 124 (2007), 454. doi: 10.1016/j.jnt.2006.10.009. Google Scholar

[21]

A. Gorodnik and H. Oh, Rational points on homogeneous varieties and Equidistribution of Adelic periods, (with appendix by Mikhail Borovoi),, Preprint., (). Google Scholar

[22]

G. Harder, Minkowskische Reduktionstheorie über Funktionenkörpern, (German),, Invent. Math., 7 (1969), 33. doi: 10.1007/BF01418773. Google Scholar

[23]

D. Kleinbock and G. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces,, Amer. Math. Soc. Transl. Ser. 2, 171 (1996), 144. Google Scholar

[24]

D. Kleinbock and G. Tomanov, Flows on S-arithmetic homogeneous spaces and applications to metric Diophantine approximation,, Comm. Math. Helv., 82 (2007), 519. doi: 10.4171/CMH/102. Google Scholar

[25]

G. A. Margulis, Indefinite quadratic forms and unipotent flows on homogeneous spaces,, Proceed of, 23 (1989), 399. Google Scholar

[26]

G. A. Margulis, On the action of unipotent groups in the space of lattices,, In Gelfand, (1975), 365. Google Scholar

[27]

G. A. Margulis, Formes quadratiques indefinies et flots unipotents sur les espaces homogènes, [Indefinite quadratic forms and unipotent flows on homogeneous spaces],, C.R. Acad. Sci., 304 (1987), 249. Google Scholar

[28]

G. A. Margulis, "On Some Aspects of the Theory of Anosov Systems,", With a survey by Richard Sharp: Periodic orbits of hyperbolic flows. Translated from the Russian by Valentina Vladimirovna Szulikowska. Springer Monographs in Mathematics. Springer-Verlag, (2004). Google Scholar

[29]

G. A. Margulis and G. Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces,, Invent. Math., 116 (1994), 347. doi: 10.1007/BF01231565. Google Scholar

[30]

A. Mohammadi, Unipotent flows and isotropic quadratic forms in positive characteristic,, To appear in IMRN., (). Google Scholar

[31]

H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants,, Duke Math. J., 113 (2002), 133. doi: 10.1215/S0012-7094-02-11314-3. Google Scholar

[32]

M. Ratner, Horocycle flows: Joining and rigidity of products,, Ann. Math. (2), 118 (1983), 277. doi: 10.2307/2007030. Google Scholar

[33]

M. Ratner, Strict measure rigidity for unipotent subgroups of solvable groups,, Invent. Math., 101 (1990), 449. doi: 10.1007/BF01231511. Google Scholar

[34]

M. Ratner, On measure rigidity of unipotent subgroups of semi-simple groups,, Acta Math., 165 (1990), 229. doi: 10.1007/BF02391906. Google Scholar

[35]

M. Rather, Raghunathan topological conjecture and distributions of unipotent flows,, Duke Math. J., 63 (1991), 235. Google Scholar

[36]

M. Ratner, On Raghunathan's measure conjecture,, Ann. of Math. (2), 134 (1992), 545. Google Scholar

[37]

M. Ratner, Raghunathan's conjectures for Cartesian products of real and $p$-adic Lie groups,, Duke Math. J., 77 (1995), 275. doi: 10.1215/S0012-7094-95-07710-2. Google Scholar

[38]

N. Shah, Uniformly distributed orbits of certain flows on homogeneous spaces,, Math. Ann., 289 (1991), 315. doi: 10.1007/BF01446574. Google Scholar

[39]

T. A. Springer, Reduction theory over global fields,, K. G. Ramanathan memorial issue. Proc. Indian Acad. Sci. Math. Sci., 104 (1994), 207. doi: 10.1007/BF02830884. Google Scholar

[40]

J. Tits, Reductive groups over $p$-adic fields,, Automorphic forms, (1977), 29. Google Scholar

[41]

G. Tomanov, Orbits on homogeneous spaces of arithmetic origin and approximations,, Analysis on homogeneous spaces and representation theory of Lie groups, 26 (1997), 265. Google Scholar

[1]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[2]

Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207

[3]

Zhihong Xia. Hyperbolic invariant sets with positive measures. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 811-818. doi: 10.3934/dcds.2006.15.811

[4]

Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008

[5]

Robert Granger, Thorsten Kleinjung, Jens Zumbrägel. Indiscreet logarithms in finite fields of small characteristic. Advances in Mathematics of Communications, 2018, 12 (2) : 263-286. doi: 10.3934/amc.2018017

[6]

Oliver Jenkinson. Optimization and majorization of invariant measures. Electronic Research Announcements, 2007, 13: 1-12.

[7]

Siniša Slijepčević. Stability of invariant measures. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1345-1363. doi: 10.3934/dcds.2009.24.1345

[8]

Agnieszka Badeńska. Measure rigidity for some transcendental meromorphic functions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2375-2402. doi: 10.3934/dcds.2012.32.2375

[9]

Boris Kalinin, Anatole Katok and Federico Rodriguez Hertz. New progress in nonuniform measure and cocycle rigidity. Electronic Research Announcements, 2008, 15: 79-92. doi: 10.3934/era.2008.15.79

[10]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271

[11]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Electronic Research Announcements, 2010, 17: 68-79. doi: 10.3934/era.2010.17.68

[12]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

[13]

Alexander Kemarsky, Frédéric Paulin, Uri Shapira. Escape of mass in homogeneous dynamics in positive characteristic. Journal of Modern Dynamics, 2017, 11: 369-407. doi: 10.3934/jmd.2017015

[14]

Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723

[15]

Yong-Fu Yang. Mechanism of the formation of singularities for diagonal systems with linearly degenerate characteristic fields. Communications on Pure & Applied Analysis, 2009, 8 (2) : 757-768. doi: 10.3934/cpaa.2009.8.757

[16]

Nian Li, Qiaoyu Hu. A conjecture on permutation trinomials over finite fields of characteristic two. Advances in Mathematics of Communications, 2019, 13 (3) : 505-512. doi: 10.3934/amc.2019031

[17]

Jonathan C. Mattingly, Etienne Pardoux. Invariant measure selection by noise. An example. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4223-4257. doi: 10.3934/dcds.2014.34.4223

[18]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[19]

Martin Bauer, Thomas Fidler, Markus Grasmair. Local uniqueness of the circular integral invariant. Inverse Problems & Imaging, 2013, 7 (1) : 107-122. doi: 10.3934/ipi.2013.7.107

[20]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

2018 Impact Factor: 0.295

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]