January  2011, 5(1): 33-48. doi: 10.3934/jmd.2011.5.33

Perfect retroreflectors and billiard dynamics

1. 

Department of Mathematics, Stony Brook University, Stony Brook, NY 11794-3651, United States

2. 

Department of Mathematics, University of Toronto, 40 St. George St., Toronto, Ontario M5S 2E4, Canada

3. 

School of Mathematics, University of Bristol, Bristol BS8 1TW

4. 

Department of Mathematics, University of Aveiro, Aveiro 3810-193, Portugal

Received  December 2009 Revised  November 2010 Published  April 2011

We construct semi-infinite billiard domains which reverse the direction of most incoming particles. We prove that almost all particles will leave the open billiard domain after a finite number of reflections. Moreover, with high probability the exit velocity is exactly opposite to the entrance velocity, and the particle's exit point is arbitrarily close to its initial position. The method is based on asymptotic analysis of statistics of entrance times to a small interval for irrational circle rotations. The rescaled entrance times have a limiting distribution in the limit when the length of the interval vanishes. The proof of the main results follows from the study of related limiting distributions and their regularity properties.
Citation: Pavel Bachurin, Konstantin Khanin, Jens Marklof, Alexander Plakhov. Perfect retroreflectors and billiard dynamics. Journal of Modern Dynamics, 2011, 5 (1) : 33-48. doi: 10.3934/jmd.2011.5.33
References:
[1]

M. Boshernitzan, A condition for minimal interval-exchange maps to be uniquely ergodic,, Duke Math. J., 52 (1985), 723.  doi: 10.1215/S0012-7094-85-05238-X.  Google Scholar

[2]

M. Boshernitzan, A condition for unique ergodicity of minimal symbolic flows,, Ergodic Theory Dynam. Systems, 12 (1992), 425.  doi: 10.1017/S0143385700006866.  Google Scholar

[3]

M. Boshernitzan and A. Nogueira, Generalized functions of interval-exchange maps,, Ergodic Theory Dynam. Systems, 24 (2004), 697.  doi: 10.1017/S0143385704000021.  Google Scholar

[4]

J. E. Eaton, On spherically symmetric lenses,, Trans. IRE Antennas Propag., 4 (1952), 66.   Google Scholar

[5]

P. Hubert, S. Lelièvre and S. Troubetzkoy, The Ehrenfest wind-tree model: Periodic directions, recurrence, diffusion,, \arXiv{0912.2891}., ().   Google Scholar

[6]

A. Katok and A. Stepin, Approximations in ergodic theory,, (Russian) Uspehi Mat. Nauk, 22 (1967), 81.   Google Scholar

[7]

M. Loeve, "Probability Theory I,", Fourth edition, 45 (1977).   Google Scholar

[8]

J. Marklof, Distribution modulo one and Ratner's theorem,, Equidistribution in Number Theory, (2007), 217.   Google Scholar

[9]

J. Marklof, The $n$-point correlations between values of a linear form,, With an appendix by Zeév Rudnick, 20 (2000), 1127.  doi: 10.1017/S0143385700000626.  Google Scholar

[10]

J. Marklof and A. Strömbergsson, The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems,, Annals of Math., 172 (2010), 1949.  doi: 10.4007/annals.2010.172.1949.  Google Scholar

[11]

A. E. Mazel and Y. G. Sinai, A limiting distribution connected with fractional parts of linear forms,, Ideas and methods in mathematical analysis, (1988), 220.   Google Scholar

[12]

A. Plakhov and P. Gouveia, Problems of maximal mean resistance on the plane,, Nonlinearity, 20 (2007), 2271.  doi: 10.1088/0951-7715/20/9/013.  Google Scholar

[13]

C. L. Siegel, "Lectures on the Geometry of Numbers,", Notes by B. Friedman, (1989).   Google Scholar

[14]

T. Tyc, U. Leonhardt, Transmutation of singularities in optical instruments,, New J. Physics, 10 (2008).   Google Scholar

[15]

W. A. Veech, Boshernitzan's criterion for unique ergodicity of an interval-exchange transformation,, Ergodic Theory Dynam. Systems, 7 (1987), 149.  doi: 10.1017/S0143385700003862.  Google Scholar

show all references

References:
[1]

M. Boshernitzan, A condition for minimal interval-exchange maps to be uniquely ergodic,, Duke Math. J., 52 (1985), 723.  doi: 10.1215/S0012-7094-85-05238-X.  Google Scholar

[2]

M. Boshernitzan, A condition for unique ergodicity of minimal symbolic flows,, Ergodic Theory Dynam. Systems, 12 (1992), 425.  doi: 10.1017/S0143385700006866.  Google Scholar

[3]

M. Boshernitzan and A. Nogueira, Generalized functions of interval-exchange maps,, Ergodic Theory Dynam. Systems, 24 (2004), 697.  doi: 10.1017/S0143385704000021.  Google Scholar

[4]

J. E. Eaton, On spherically symmetric lenses,, Trans. IRE Antennas Propag., 4 (1952), 66.   Google Scholar

[5]

P. Hubert, S. Lelièvre and S. Troubetzkoy, The Ehrenfest wind-tree model: Periodic directions, recurrence, diffusion,, \arXiv{0912.2891}., ().   Google Scholar

[6]

A. Katok and A. Stepin, Approximations in ergodic theory,, (Russian) Uspehi Mat. Nauk, 22 (1967), 81.   Google Scholar

[7]

M. Loeve, "Probability Theory I,", Fourth edition, 45 (1977).   Google Scholar

[8]

J. Marklof, Distribution modulo one and Ratner's theorem,, Equidistribution in Number Theory, (2007), 217.   Google Scholar

[9]

J. Marklof, The $n$-point correlations between values of a linear form,, With an appendix by Zeév Rudnick, 20 (2000), 1127.  doi: 10.1017/S0143385700000626.  Google Scholar

[10]

J. Marklof and A. Strömbergsson, The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems,, Annals of Math., 172 (2010), 1949.  doi: 10.4007/annals.2010.172.1949.  Google Scholar

[11]

A. E. Mazel and Y. G. Sinai, A limiting distribution connected with fractional parts of linear forms,, Ideas and methods in mathematical analysis, (1988), 220.   Google Scholar

[12]

A. Plakhov and P. Gouveia, Problems of maximal mean resistance on the plane,, Nonlinearity, 20 (2007), 2271.  doi: 10.1088/0951-7715/20/9/013.  Google Scholar

[13]

C. L. Siegel, "Lectures on the Geometry of Numbers,", Notes by B. Friedman, (1989).   Google Scholar

[14]

T. Tyc, U. Leonhardt, Transmutation of singularities in optical instruments,, New J. Physics, 10 (2008).   Google Scholar

[15]

W. A. Veech, Boshernitzan's criterion for unique ergodicity of an interval-exchange transformation,, Ergodic Theory Dynam. Systems, 7 (1987), 149.  doi: 10.1017/S0143385700003862.  Google Scholar

[1]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[2]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[3]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[4]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[5]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[6]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[7]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[8]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[9]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[10]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[11]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[12]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[13]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[14]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[15]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[16]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[17]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[18]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[19]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[20]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (18)

[Back to Top]