July  2011, 5(3): 409-472. doi: 10.3934/jmd.2011.5.409

Contact homology of orbit complements and implied existence

1. 

Department of Mathematics, Purdue University, 150 N. University St. , West Lafayette, IN 47906, United States

Received  November 2010 Revised  October 2011 Published  November 2011

For Reeb vector fields on closed 3-manifolds, cylindrical contact homology is used to show that the existence of a set of closed Reeb orbit with certain knotting/linking properties implies the existence of other Reeb orbits with other knotting/linking properties relative to the original set. We work out a few examples on the 3-sphere to illustrate the theory, and describe an application to closed geodesics on $S^2$ (a version of a result of Angenent in [1]).
Citation: Al Momin. Contact homology of orbit complements and implied existence. Journal of Modern Dynamics, 2011, 5 (3) : 409-472. doi: 10.3934/jmd.2011.5.409
References:
[1]

Sigurd B. Angenent, Curve shortening and the topology of closed geodesics on surfaces,, Ann. of Math. (2), 162 (2005), 1187.   Google Scholar

[2]

Frédéric Bourgeois, Kai Cieliebak and Tobias Ekholm, A note on Reeb dynamics on the tight 3-sphere,, J. Mod. Dyn., 1 (2007), 597.  doi: 10.3934/jmd.2007.1.597.  Google Scholar

[3]

F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki and E. Zehnder, Compactness results in symplectic field theory,, Geom. Topol., 7 (2003), 799.  doi: 10.2140/gt.2003.7.799.  Google Scholar

[4]

Frédéric Bourgeois and Klaus Mohnke, Coherent orientations in symplectic field theory,, Math. Z., 248 (2004), 123.   Google Scholar

[5]

Frédéric Bourgeois, "A Morse-Bott Approach to Contact Homology,", Ph.D. thesis, (2002).   Google Scholar

[6]

Frédéric Bourgeois, Contact homology and homotopy groups of the space of contact structures,, Math. Res. Lett., 13 (2006), 71.   Google Scholar

[7]

Andrew Cotton-Clay, Symplectic Floer homology of area-preserving surface diffeomorphisms,, Geom. Topol., 13 (2009), 2619.   Google Scholar

[8]

V. Colin, P. Ghiggini, K. Honda and M. Hutchings, Sutures and contact homology I,, \arXiv{1004.2942}, (2010).   Google Scholar

[9]

V. Colin and K. Honda, Reeb vector fields and open book decompositions,, \arXiv{0809.5088}., ().   Google Scholar

[10]

Vincent Colin and Ko Honda, Stabilizing the monodromy of an open book decomposition,, Geom. Dedicata, 132 (2008), 95.  doi: 10.1007/s10711-007-9165-5.  Google Scholar

[11]

Vincent Colin, Ko Honda and François Laudenbach, On the flux of pseudo-Anosov homeomorphisms,, Algebr. Geom. Topol., 8 (2008), 2147.  doi: 10.2140/agt.2008.8.2147.  Google Scholar

[12]

J. C. Cha and C. Livingston, Knotinfo: Table of knot invariants. Available from:, \url{http://www.indiana.edu/~knotinfo}., ().   Google Scholar

[13]

Dragomir L. Dragnev, Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations,, Comm. Pure Appl. Math., 57 (2004), 726.  doi: 10.1002/cpa.20018.  Google Scholar

[14]

Y. Eliashberg, A. Givental and H. Hofer, Introduction to symplectic field theory, GAFA 2000 (Tel Aviv, 1999),, in, (2000), 560.   Google Scholar

[15]

John B. Etnyre and Jeremy Van Horn-Morris, Fibered transverse knots and the Bennequin bound,, International Mathematics Research Notices, 2011 (2011), 1483.   Google Scholar

[16]

Yakov Eliashberg, Sang Seon Kim and Leonid Polterovich, Geometry of contact transformations and domains: Orderability versus squeezing,, Geom. Topol., 10 (2006), 1635.   Google Scholar

[17]

Andreas Floer, Helmut Hofer and Dietmar Salamon, Transversality in elliptic Morse theory for the symplectic action,, Duke Math. J., 80 (1995), 251.  doi: 10.1215/S0012-7094-95-08010-7.  Google Scholar

[18]

John Franks, Geodesics on $S^2$ and periodic points of annulus homeomorphisms,, Invent. Math., 108 (1992), 403.  doi: 10.1007/BF02100612.  Google Scholar

[19]

David Gabai, Detecting fibred links in $S^3$,, Comment. Math. Helv., 61 (1986), 519.  doi: 10.1007/BF02621931.  Google Scholar

[20]

Hansjörg Geiges, "An Introduction to Contact Topology,", Cambridge Studies in Advanced Mathematics, 109 (2008).  doi: 10.1017/CBO9780511611438.  Google Scholar

[21]

E. Giroux, Géométrie de contact: De la dimension trois vers les dimensions supérieures,, in, (2002), 405.   Google Scholar

[22]

R. W. Ghrist, J. B. Van den Berg and R. C. Vandervorst, Morse theory on spaces of braids and Lagrangian dynamics,, Invent. Math., 152 (2003), 369.  doi: 10.1007/s00222-002-0277-0.  Google Scholar

[23]

R. W. Ghrist, J. B. Van den Berg, R. C. Vandervorst and W. Wójcik, Braid Floer homology,, \arXiv{0910.0647}., ().   Google Scholar

[24]

Matthew Hedden, An Ozsváth-Szabó Floer homology invariant of knots in a contact manifold,, Adv. Math., 219 (2008), 89.  doi: 10.1016/j.aim.2008.04.007.  Google Scholar

[25]

Umberto Hryniewicz, Al Momin and Pedro Salomão, A Poincaré-Birkhoff Theorem for Reeb flows on $S^3$,, preprint, ().   Google Scholar

[26]

Adam Harris and Gabriel P. Paternain, Dynamically convex Finsler metrics and $J$-holomorphic embedding of asymptotic cylinders,, Ann. Global Anal. Geom., 34 (2008), 115.  doi: 10.1007/s10455-008-9111-2.  Google Scholar

[27]

U. Hryniewicz and P. A. S. Salomão, On the existence of disk-like global sections for Reeb flows on the tight 3-sphere,, to appear in Duke Mathematical Journal., ().   Google Scholar

[28]

Michael Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations,, J. Eur. Math. Soc. (JEMS), 4 (2002), 313.  doi: 10.1007/s100970100041.  Google Scholar

[29]

H. Hofer, K. Wysocki and E. Zehnder, Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants,, Geom. Funct. Anal., 5 (1995), 270.  doi: 10.1007/BF01895669.  Google Scholar

[30]

_____, Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 337.   Google Scholar

[31]

_____, The dynamics on three-dimensional strictly convex energy surfaces,, Ann. of Math. (2), 148 (1998), 197.   Google Scholar

[32]

_____, Finite energy foliations of tight three-spheres and Hamiltonian dynamics,, Ann. of Math. (2), 157 (2003), 125.   Google Scholar

[33]

Helmut Hofer and Eduard Zehnder, "Symplectic Invariants and Hamiltonian Dynamics,", Birkhäuser Advanced Texts: Basler Lehrbücher, (1994).   Google Scholar

[34]

A. B. Katok, Ergodic perturbations of degenerate integrable Hamiltonian systems,, Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 539.   Google Scholar

[35]

Dusa McDuff, The local behaviour of holomorphic curves in almost complex 4-manifolds,, J. Differential Geom., 34 (1991), 143.   Google Scholar

[36]

Mario J. Micallef and Brian White, The structure of branch points in minimal surfaces and in pseudoholomorphic curves,, Ann. of Math. (2), 141 (1995), 35.   Google Scholar

[37]

Yi Ni, Knot Floer homology detects fibred knots,, Invent. Math., 170 (2007), 577.  doi: 10.1007/s00222-007-0075-9.  Google Scholar

[38]

Matthias Schwarz, "Cohomology Operations from $S^1$-Cobordisms in Floer Homology,", Ph.D. thesis, (1995).   Google Scholar

[39]

R. Siefring, Intersection theory of punctured pseudoholomorphic curves,, to appear in Geometry & Topology, ().   Google Scholar

[40]

Richard Siefring, Relative asymptotic behavior of pseudoholomorphic half-cylinders,, Comm. Pure Appl. Math., 61 (2008), 1631.  doi: 10.1002/cpa.20224.  Google Scholar

[41]

W. P. Thurston, Hyperbolic Structures on 3-manifolds, II: Surface groups and 3-manifolds which fiber over the circle,, \arXiv{math/9801045}, (1998).   Google Scholar

[42]

W. P. Thurston and H. E. Winkelnkemper, On the existence of contact forms,, Proc. Amer. Math. Soc., 52 (1975), 345.  doi: 10.1090/S0002-9939-1975-0375366-7.  Google Scholar

[43]

Chris Wendl, Automatic transversality and orbifolds of punctured holomorphic curves in dimension four,, Comment. Math. Helv., 85 (2010), 347.   Google Scholar

show all references

References:
[1]

Sigurd B. Angenent, Curve shortening and the topology of closed geodesics on surfaces,, Ann. of Math. (2), 162 (2005), 1187.   Google Scholar

[2]

Frédéric Bourgeois, Kai Cieliebak and Tobias Ekholm, A note on Reeb dynamics on the tight 3-sphere,, J. Mod. Dyn., 1 (2007), 597.  doi: 10.3934/jmd.2007.1.597.  Google Scholar

[3]

F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki and E. Zehnder, Compactness results in symplectic field theory,, Geom. Topol., 7 (2003), 799.  doi: 10.2140/gt.2003.7.799.  Google Scholar

[4]

Frédéric Bourgeois and Klaus Mohnke, Coherent orientations in symplectic field theory,, Math. Z., 248 (2004), 123.   Google Scholar

[5]

Frédéric Bourgeois, "A Morse-Bott Approach to Contact Homology,", Ph.D. thesis, (2002).   Google Scholar

[6]

Frédéric Bourgeois, Contact homology and homotopy groups of the space of contact structures,, Math. Res. Lett., 13 (2006), 71.   Google Scholar

[7]

Andrew Cotton-Clay, Symplectic Floer homology of area-preserving surface diffeomorphisms,, Geom. Topol., 13 (2009), 2619.   Google Scholar

[8]

V. Colin, P. Ghiggini, K. Honda and M. Hutchings, Sutures and contact homology I,, \arXiv{1004.2942}, (2010).   Google Scholar

[9]

V. Colin and K. Honda, Reeb vector fields and open book decompositions,, \arXiv{0809.5088}., ().   Google Scholar

[10]

Vincent Colin and Ko Honda, Stabilizing the monodromy of an open book decomposition,, Geom. Dedicata, 132 (2008), 95.  doi: 10.1007/s10711-007-9165-5.  Google Scholar

[11]

Vincent Colin, Ko Honda and François Laudenbach, On the flux of pseudo-Anosov homeomorphisms,, Algebr. Geom. Topol., 8 (2008), 2147.  doi: 10.2140/agt.2008.8.2147.  Google Scholar

[12]

J. C. Cha and C. Livingston, Knotinfo: Table of knot invariants. Available from:, \url{http://www.indiana.edu/~knotinfo}., ().   Google Scholar

[13]

Dragomir L. Dragnev, Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations,, Comm. Pure Appl. Math., 57 (2004), 726.  doi: 10.1002/cpa.20018.  Google Scholar

[14]

Y. Eliashberg, A. Givental and H. Hofer, Introduction to symplectic field theory, GAFA 2000 (Tel Aviv, 1999),, in, (2000), 560.   Google Scholar

[15]

John B. Etnyre and Jeremy Van Horn-Morris, Fibered transverse knots and the Bennequin bound,, International Mathematics Research Notices, 2011 (2011), 1483.   Google Scholar

[16]

Yakov Eliashberg, Sang Seon Kim and Leonid Polterovich, Geometry of contact transformations and domains: Orderability versus squeezing,, Geom. Topol., 10 (2006), 1635.   Google Scholar

[17]

Andreas Floer, Helmut Hofer and Dietmar Salamon, Transversality in elliptic Morse theory for the symplectic action,, Duke Math. J., 80 (1995), 251.  doi: 10.1215/S0012-7094-95-08010-7.  Google Scholar

[18]

John Franks, Geodesics on $S^2$ and periodic points of annulus homeomorphisms,, Invent. Math., 108 (1992), 403.  doi: 10.1007/BF02100612.  Google Scholar

[19]

David Gabai, Detecting fibred links in $S^3$,, Comment. Math. Helv., 61 (1986), 519.  doi: 10.1007/BF02621931.  Google Scholar

[20]

Hansjörg Geiges, "An Introduction to Contact Topology,", Cambridge Studies in Advanced Mathematics, 109 (2008).  doi: 10.1017/CBO9780511611438.  Google Scholar

[21]

E. Giroux, Géométrie de contact: De la dimension trois vers les dimensions supérieures,, in, (2002), 405.   Google Scholar

[22]

R. W. Ghrist, J. B. Van den Berg and R. C. Vandervorst, Morse theory on spaces of braids and Lagrangian dynamics,, Invent. Math., 152 (2003), 369.  doi: 10.1007/s00222-002-0277-0.  Google Scholar

[23]

R. W. Ghrist, J. B. Van den Berg, R. C. Vandervorst and W. Wójcik, Braid Floer homology,, \arXiv{0910.0647}., ().   Google Scholar

[24]

Matthew Hedden, An Ozsváth-Szabó Floer homology invariant of knots in a contact manifold,, Adv. Math., 219 (2008), 89.  doi: 10.1016/j.aim.2008.04.007.  Google Scholar

[25]

Umberto Hryniewicz, Al Momin and Pedro Salomão, A Poincaré-Birkhoff Theorem for Reeb flows on $S^3$,, preprint, ().   Google Scholar

[26]

Adam Harris and Gabriel P. Paternain, Dynamically convex Finsler metrics and $J$-holomorphic embedding of asymptotic cylinders,, Ann. Global Anal. Geom., 34 (2008), 115.  doi: 10.1007/s10455-008-9111-2.  Google Scholar

[27]

U. Hryniewicz and P. A. S. Salomão, On the existence of disk-like global sections for Reeb flows on the tight 3-sphere,, to appear in Duke Mathematical Journal., ().   Google Scholar

[28]

Michael Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations,, J. Eur. Math. Soc. (JEMS), 4 (2002), 313.  doi: 10.1007/s100970100041.  Google Scholar

[29]

H. Hofer, K. Wysocki and E. Zehnder, Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants,, Geom. Funct. Anal., 5 (1995), 270.  doi: 10.1007/BF01895669.  Google Scholar

[30]

_____, Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 337.   Google Scholar

[31]

_____, The dynamics on three-dimensional strictly convex energy surfaces,, Ann. of Math. (2), 148 (1998), 197.   Google Scholar

[32]

_____, Finite energy foliations of tight three-spheres and Hamiltonian dynamics,, Ann. of Math. (2), 157 (2003), 125.   Google Scholar

[33]

Helmut Hofer and Eduard Zehnder, "Symplectic Invariants and Hamiltonian Dynamics,", Birkhäuser Advanced Texts: Basler Lehrbücher, (1994).   Google Scholar

[34]

A. B. Katok, Ergodic perturbations of degenerate integrable Hamiltonian systems,, Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 539.   Google Scholar

[35]

Dusa McDuff, The local behaviour of holomorphic curves in almost complex 4-manifolds,, J. Differential Geom., 34 (1991), 143.   Google Scholar

[36]

Mario J. Micallef and Brian White, The structure of branch points in minimal surfaces and in pseudoholomorphic curves,, Ann. of Math. (2), 141 (1995), 35.   Google Scholar

[37]

Yi Ni, Knot Floer homology detects fibred knots,, Invent. Math., 170 (2007), 577.  doi: 10.1007/s00222-007-0075-9.  Google Scholar

[38]

Matthias Schwarz, "Cohomology Operations from $S^1$-Cobordisms in Floer Homology,", Ph.D. thesis, (1995).   Google Scholar

[39]

R. Siefring, Intersection theory of punctured pseudoholomorphic curves,, to appear in Geometry & Topology, ().   Google Scholar

[40]

Richard Siefring, Relative asymptotic behavior of pseudoholomorphic half-cylinders,, Comm. Pure Appl. Math., 61 (2008), 1631.  doi: 10.1002/cpa.20224.  Google Scholar

[41]

W. P. Thurston, Hyperbolic Structures on 3-manifolds, II: Surface groups and 3-manifolds which fiber over the circle,, \arXiv{math/9801045}, (1998).   Google Scholar

[42]

W. P. Thurston and H. E. Winkelnkemper, On the existence of contact forms,, Proc. Amer. Math. Soc., 52 (1975), 345.  doi: 10.1090/S0002-9939-1975-0375366-7.  Google Scholar

[43]

Chris Wendl, Automatic transversality and orbifolds of punctured holomorphic curves in dimension four,, Comment. Math. Helv., 85 (2010), 347.   Google Scholar

[1]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[2]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[3]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[4]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[5]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[6]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[7]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]