\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Contact homology of orbit complements and implied existence

Abstract Related Papers Cited by
  • For Reeb vector fields on closed 3-manifolds, cylindrical contact homology is used to show that the existence of a set of closed Reeb orbit with certain knotting/linking properties implies the existence of other Reeb orbits with other knotting/linking properties relative to the original set. We work out a few examples on the 3-sphere to illustrate the theory, and describe an application to closed geodesics on $S^2$ (a version of a result of Angenent in [1]).
    Mathematics Subject Classification: Primary: 37J45; Secondary: 53D42.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Sigurd B. Angenent, Curve shortening and the topology of closed geodesics on surfaces, Ann. of Math. (2), 162 (2005), 1187-1241.

    [2]

    Frédéric Bourgeois, Kai Cieliebak and Tobias Ekholm, A note on Reeb dynamics on the tight 3-sphere, J. Mod. Dyn., 1 (2007), 597-613.doi: 10.3934/jmd.2007.1.597.

    [3]

    F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki and E. Zehnder, Compactness results in symplectic field theory, Geom. Topol., 7 (2003), 799-888.doi: 10.2140/gt.2003.7.799.

    [4]

    Frédéric Bourgeois and Klaus Mohnke, Coherent orientations in symplectic field theory, Math. Z., 248 (2004), 123-146.

    [5]

    Frédéric Bourgeois, "A Morse-Bott Approach to Contact Homology," Ph.D. thesis, Stanford University, 2002.

    [6]

    Frédéric Bourgeois, Contact homology and homotopy groups of the space of contact structures, Math. Res. Lett., 13 (2006), 71-85.

    [7]

    Andrew Cotton-Clay, Symplectic Floer homology of area-preserving surface diffeomorphisms, Geom. Topol., 13 (2009), 2619-2674.

    [8]

    V. Colin, P. Ghiggini, K. Honda and M. Hutchings, Sutures and contact homology I, arXiv:1004.2942, 2010.

    [9]

    V. Colin and K. HondaReeb vector fields and open book decompositions, arXiv:0809.5088.

    [10]

    Vincent Colin and Ko Honda, Stabilizing the monodromy of an open book decomposition, Geom. Dedicata, 132 (2008), 95-103.doi: 10.1007/s10711-007-9165-5.

    [11]

    Vincent Colin, Ko Honda and François Laudenbach, On the flux of pseudo-Anosov homeomorphisms, Algebr. Geom. Topol., 8 (2008), 2147-2160.doi: 10.2140/agt.2008.8.2147.

    [12]

    J. C. Cha and C. LivingstonKnotinfo: Table of knot invariants. Available from: http://www.indiana.edu/~knotinfo.

    [13]

    Dragomir L. Dragnev, Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations, Comm. Pure Appl. Math., 57 (2004), 726-763.doi: 10.1002/cpa.20018.

    [14]

    Y. Eliashberg, A. Givental and H. Hofer, Introduction to symplectic field theory, GAFA 2000 (Tel Aviv, 1999), in "Geom. Funct. Anal. 2000," Special Volume, Part II, 560-673.

    [15]

    John B. Etnyre and Jeremy Van Horn-Morris, Fibered transverse knots and the Bennequin bound, International Mathematics Research Notices, 2011 (2011), 1483-1509.

    [16]

    Yakov Eliashberg, Sang Seon Kim and Leonid Polterovich, Geometry of contact transformations and domains: Orderability versus squeezing, Geom. Topol., 10 (2006), 1635-1747.

    [17]

    Andreas Floer, Helmut Hofer and Dietmar Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J., 80 (1995), 251-292.doi: 10.1215/S0012-7094-95-08010-7.

    [18]

    John Franks, Geodesics on $S^2$ and periodic points of annulus homeomorphisms, Invent. Math., 108 (1992), 403-418.doi: 10.1007/BF02100612.

    [19]

    David Gabai, Detecting fibred links in $S^3$, Comment. Math. Helv., 61 (1986), 519-555.doi: 10.1007/BF02621931.

    [20]

    Hansjörg Geiges, "An Introduction to Contact Topology," Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, Cambridge, 2008.doi: 10.1017/CBO9780511611438.

    [21]

    E. Giroux, Géométrie de contact: De la dimension trois vers les dimensions supérieures, in "Proceedings of the International Congress of Mathematicians," Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, (2002), 405-414.

    [22]

    R. W. Ghrist, J. B. Van den Berg and R. C. Vandervorst, Morse theory on spaces of braids and Lagrangian dynamics, Invent. Math., 152 (2003), 369-432.doi: 10.1007/s00222-002-0277-0.

    [23]

    R. W. Ghrist, J. B. Van den Berg, R. C. Vandervorst and W. WójcikBraid Floer homology, arXiv:0910.0647.

    [24]

    Matthew Hedden, An Ozsváth-Szabó Floer homology invariant of knots in a contact manifold, Adv. Math., 219 (2008), 89-117.doi: 10.1016/j.aim.2008.04.007.

    [25]

    Umberto Hryniewicz, Al Momin and Pedro SalomãoA Poincaré-Birkhoff Theorem for Reeb flows on $S^3$, preprint, arXiv:1110.3782.

    [26]

    Adam Harris and Gabriel P. Paternain, Dynamically convex Finsler metrics and $J$-holomorphic embedding of asymptotic cylinders, Ann. Global Anal. Geom., 34 (2008), 115-134.doi: 10.1007/s10455-008-9111-2.

    [27]

    U. Hryniewicz and P. A. S. SalomãoOn the existence of disk-like global sections for Reeb flows on the tight 3-sphere, to appear in Duke Mathematical Journal.

    [28]

    Michael Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. (JEMS), 4 (2002), 313-361.doi: 10.1007/s100970100041.

    [29]

    H. Hofer, K. Wysocki and E. Zehnder, Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants, Geom. Funct. Anal., 5 (1995), 270-328.doi: 10.1007/BF01895669.

    [30]

    _____, Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 337-379.

    [31]

    _____, The dynamics on three-dimensional strictly convex energy surfaces, Ann. of Math. (2), 148 (1998), 197-289.

    [32]

    _____, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2), 157 (2003), 125-255.

    [33]

    Helmut Hofer and Eduard Zehnder, "Symplectic Invariants and Hamiltonian Dynamics," Birkhäuser Advanced Texts: Basler Lehrbücher, [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994.

    [34]

    A. B. Katok, Ergodic perturbations of degenerate integrable Hamiltonian systems, Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 539-576.

    [35]

    Dusa McDuff, The local behaviour of holomorphic curves in almost complex 4-manifolds, J. Differential Geom., 34 (1991), 143-164.

    [36]

    Mario J. Micallef and Brian White, The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. of Math. (2), 141 (1995), 35-85.

    [37]

    Yi Ni, Knot Floer homology detects fibred knots, Invent. Math., 170 (2007), 577-608.doi: 10.1007/s00222-007-0075-9.

    [38]

    Matthias Schwarz, "Cohomology Operations from $S^1$-Cobordisms in Floer Homology," Ph.D. thesis, ETH Zurich, 1995.

    [39]

    R. SiefringIntersection theory of punctured pseudoholomorphic curves, to appear in Geometry & Topology, arXiv:0907.0470.

    [40]

    Richard Siefring, Relative asymptotic behavior of pseudoholomorphic half-cylinders, Comm. Pure Appl. Math., 61 (2008), 1631-1684.doi: 10.1002/cpa.20224.

    [41]

    W. P. Thurston, Hyperbolic Structures on 3-manifolds, II: Surface groups and 3-manifolds which fiber over the circle, arXiv:math/9801045, 1998.

    [42]

    W. P. Thurston and H. E. Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc., 52 (1975), 345-347.doi: 10.1090/S0002-9939-1975-0375366-7.

    [43]

    Chris Wendl, Automatic transversality and orbifolds of punctured holomorphic curves in dimension four, Comment. Math. Helv., 85 (2010), 347-407.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(139) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return