July  2011, 5(3): 593-608. doi: 10.3934/jmd.2011.5.593

Bernoulli equilibrium states for surface diffeomorphisms

1. 

Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, POB 26, Rehovot, Israel

Received  May 2011 Revised  July 2011 Published  November 2011

Suppose $f\colon M\to M$ is a $C^{1+\alpha}$ $(\alpha>0)$ diffeomorphism on a compact smooth orientable manifold $M$ of dimension 2, and let $\mu_\Psi$ be an equilibrium measure for a Hölder-continuous potential $\Psi\colon M\to \mathbb R$. We show that if $\mu_\Psi$ has positive measure-theoretic entropy, then $f$ is measure-theoretically isomorphic mod $\mu_\Psi$ to the product of a Bernoulli scheme and a finite rotation.
Citation: Omri M. Sarig. Bernoulli equilibrium states for surface diffeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 593-608. doi: 10.3934/jmd.2011.5.593
References:
[1]

R. L. Adler and B. Weiss, "Similarity of Automorphisms of the Torus,", Memoirs of the American Mathematical Society, (1970).   Google Scholar

[2]

R. L. Adler, P. Shields and M. Smorodinsky, Irreducible Markov shifts,, The Annals of Math. Statistics, 43 (1972), 1027.  doi: 10.1214/aoms/1177692569.  Google Scholar

[3]

L. Barreira and Y. Pesin, "Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents,", Encyclopedia of Mathematics and its Applications, 115 (2007).   Google Scholar

[4]

R. Bowen, Bernoulli equilibrium states for Axiom A diffeomorphisms,, Math. Systems Theory, 8 (): 289.  doi: 10.1007/BF01780576.  Google Scholar

[5]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Lecture Notes in Mathematics, 470 (1975).   Google Scholar

[6]

J. Buzzi, Maximal entropy measures for piecewise affine surface homeomorphisms,, Ergodic Theory Dynam. Systems, 29 (2009), 1723.  doi: 10.1017/S0143385708000953.  Google Scholar

[7]

J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps,, Ergodic Th. & Dynam. Syst., 23 (2003), 1383.   Google Scholar

[8]

B. M. Gurevič, Shift entropy and Markov measures in the space of paths of a countable graph,, (Russian), 192 (1970), 963.   Google Scholar

[9]

B. P. Kitchens, "Symbolic Dynamics. One-Sided, Two-Sided and Countable State Markov Shifts,", Universitext, (1998).   Google Scholar

[10]

F. Ledrappier, Propriétés ergodiques de mesures de Sinaï,, Inst. Hautes Études Sci. Publ. Math. No., 59 (1984), 163.   Google Scholar

[11]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula,, Ann. of Math. (2), 122 (1985), 509.  doi: 10.2307/1971328.  Google Scholar

[12]

S. Newhouse, Continuity properties of entropy,, Annals of Math. (2), 129 (1989), 215.  doi: 10.2307/1971492.  Google Scholar

[13]

D. Ornstein, Factors of Bernoulli shifts are Bernoulli shifts,, Adv. in Math., 5 (1970), 349.  doi: 10.1016/0001-8708(70)90009-5.  Google Scholar

[14]

D. Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic,, Adv. in Math., 5 (1970), 339.  doi: 10.1016/0001-8708(70)90008-3.  Google Scholar

[15]

D. Ornstein, Imbedding Bernoulli shifts in flows,, in, (1970), 178.   Google Scholar

[16]

D. Ornstein and N. A. Friedman, On isomorphism of weak Bernoulli transformations,, Adv. in Math., 5 (1970), 365.  doi: 10.1016/0001-8708(70)90010-1.  Google Scholar

[17]

D. Ornstein and B. Weiss, On the Bernoulli nature of systems with some hyperbolic structure,, Ergodic Theory Dynam. Systems, 18 (1998), 441.  doi: 10.1017/S0143385798100354.  Google Scholar

[18]

W. Parry, Intrinsic Markov chains,, Trans. Amer. Math. Soc., 112 (1964), 55.  doi: 10.1090/S0002-9947-1964-0161372-1.  Google Scholar

[19]

Y. Pesin, Characteristic Ljapunov exponents and smooth ergodic theory,, Uspehi, 32 (1977), 55.   Google Scholar

[20]

M. Ratner, Anosov flows with Gibbs measures are also Bernoullian,, Israel J. Math., 17 (1974), 380.  doi: 10.1007/BF02757140.  Google Scholar

[21]

R. Ruelle, A measure associated with axiom-A attractors,, Amer. J. Math., 98 (1976), 619.  doi: 10.2307/2373810.  Google Scholar

[22]

O. M. Sarig, Thermodynamic formalism for null recurrent potentials,, Israel J. Math., 121 (2001), 285.  doi: 10.1007/BF02802508.  Google Scholar

[23]

O. M. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy,, submitted., ().   Google Scholar

[24]

P. Walters, Ruelle's operator theorem and g-measures,, Trans. Amer. Math. Soc., 214 (1975), 375.   Google Scholar

[25]

P. Walters, "Ergodic Theory, Introductory Lectures,", Lecture Notes in Mathematics, 458 (1975).   Google Scholar

[26]

P. Walters, Regularity conditions and Bernoulli properties of equilibrium states and g-measures,, J. London Math. Soc. (2), 71 (2005), 379.  doi: 10.1112/S0024610704006076.  Google Scholar

show all references

References:
[1]

R. L. Adler and B. Weiss, "Similarity of Automorphisms of the Torus,", Memoirs of the American Mathematical Society, (1970).   Google Scholar

[2]

R. L. Adler, P. Shields and M. Smorodinsky, Irreducible Markov shifts,, The Annals of Math. Statistics, 43 (1972), 1027.  doi: 10.1214/aoms/1177692569.  Google Scholar

[3]

L. Barreira and Y. Pesin, "Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents,", Encyclopedia of Mathematics and its Applications, 115 (2007).   Google Scholar

[4]

R. Bowen, Bernoulli equilibrium states for Axiom A diffeomorphisms,, Math. Systems Theory, 8 (): 289.  doi: 10.1007/BF01780576.  Google Scholar

[5]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Lecture Notes in Mathematics, 470 (1975).   Google Scholar

[6]

J. Buzzi, Maximal entropy measures for piecewise affine surface homeomorphisms,, Ergodic Theory Dynam. Systems, 29 (2009), 1723.  doi: 10.1017/S0143385708000953.  Google Scholar

[7]

J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps,, Ergodic Th. & Dynam. Syst., 23 (2003), 1383.   Google Scholar

[8]

B. M. Gurevič, Shift entropy and Markov measures in the space of paths of a countable graph,, (Russian), 192 (1970), 963.   Google Scholar

[9]

B. P. Kitchens, "Symbolic Dynamics. One-Sided, Two-Sided and Countable State Markov Shifts,", Universitext, (1998).   Google Scholar

[10]

F. Ledrappier, Propriétés ergodiques de mesures de Sinaï,, Inst. Hautes Études Sci. Publ. Math. No., 59 (1984), 163.   Google Scholar

[11]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula,, Ann. of Math. (2), 122 (1985), 509.  doi: 10.2307/1971328.  Google Scholar

[12]

S. Newhouse, Continuity properties of entropy,, Annals of Math. (2), 129 (1989), 215.  doi: 10.2307/1971492.  Google Scholar

[13]

D. Ornstein, Factors of Bernoulli shifts are Bernoulli shifts,, Adv. in Math., 5 (1970), 349.  doi: 10.1016/0001-8708(70)90009-5.  Google Scholar

[14]

D. Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic,, Adv. in Math., 5 (1970), 339.  doi: 10.1016/0001-8708(70)90008-3.  Google Scholar

[15]

D. Ornstein, Imbedding Bernoulli shifts in flows,, in, (1970), 178.   Google Scholar

[16]

D. Ornstein and N. A. Friedman, On isomorphism of weak Bernoulli transformations,, Adv. in Math., 5 (1970), 365.  doi: 10.1016/0001-8708(70)90010-1.  Google Scholar

[17]

D. Ornstein and B. Weiss, On the Bernoulli nature of systems with some hyperbolic structure,, Ergodic Theory Dynam. Systems, 18 (1998), 441.  doi: 10.1017/S0143385798100354.  Google Scholar

[18]

W. Parry, Intrinsic Markov chains,, Trans. Amer. Math. Soc., 112 (1964), 55.  doi: 10.1090/S0002-9947-1964-0161372-1.  Google Scholar

[19]

Y. Pesin, Characteristic Ljapunov exponents and smooth ergodic theory,, Uspehi, 32 (1977), 55.   Google Scholar

[20]

M. Ratner, Anosov flows with Gibbs measures are also Bernoullian,, Israel J. Math., 17 (1974), 380.  doi: 10.1007/BF02757140.  Google Scholar

[21]

R. Ruelle, A measure associated with axiom-A attractors,, Amer. J. Math., 98 (1976), 619.  doi: 10.2307/2373810.  Google Scholar

[22]

O. M. Sarig, Thermodynamic formalism for null recurrent potentials,, Israel J. Math., 121 (2001), 285.  doi: 10.1007/BF02802508.  Google Scholar

[23]

O. M. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy,, submitted., ().   Google Scholar

[24]

P. Walters, Ruelle's operator theorem and g-measures,, Trans. Amer. Math. Soc., 214 (1975), 375.   Google Scholar

[25]

P. Walters, "Ergodic Theory, Introductory Lectures,", Lecture Notes in Mathematics, 458 (1975).   Google Scholar

[26]

P. Walters, Regularity conditions and Bernoulli properties of equilibrium states and g-measures,, J. London Math. Soc. (2), 71 (2005), 379.  doi: 10.1112/S0024610704006076.  Google Scholar

[1]

Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094

[2]

Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021003

[3]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

[4]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[5]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[6]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[7]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[8]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[9]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[10]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[11]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[12]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[13]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[14]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[15]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[16]

Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169

[17]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[18]

Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406

[19]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[20]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]