\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On distortion in groups of homeomorphisms

Abstract Related Papers Cited by
  • Let $X$ be a path-connected topological space admitting a universal cover. Let Homeo$(X, a)$ denote the group of homeomorphisms of $X$ preserving a degree one cohomology class $ a$.
        We investigate the distortion in Homeo$(X, a)$. Let $g\in$ Homeo$(X, a)$. We define a Nielsen-type equivalence relation on the space of $g$-invariant Borel probability measures on $X$ and prove that if a homeomorphism $g$ admits two nonequivalent invariant measures then it is undistorted. We also define a local rotation number of a homeomorphism generalizing the notion of the rotation of a homeomorphism of the circle. Then we prove that a homeomorphism is undistorted if its rotation number is nonconstant.
    Mathematics Subject Classification: 54h20; 20f, 37b, 57s.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnold and B. A. Khesin, "Topological Methods in Hydrodynamics," Applied Mathematical Sciences, 125, Springer-Verlag, New York, 1998.

    [2]

    M. Burger, A. Iozzi and A. Wienhard, Surface group representations with maximal Toledo invariant, Ann. of Math. (2), 172 (2010), 517-566.doi: 10.4007/annals.2010.172.517.

    [3]

    D. Calegari, "scl," MSJ Memoirs, 20, Mathematical Society of Japan, Tokyo, 2009.

    [4]

    D. Calegari and M. H. Freedman, Distortion in transformation groups, With an appendix by Yves de Cornulier, Geom. Topol., 10 (2006), 267-293.doi: 10.2140/gt.2006.10.267.

    [5]

    J. Franks, Rotation vectors and fixed points of area-preserving surface diffeomorphisms, Trans. Amer. Math. Soc., 348 (1996), 2637-2662.doi: 10.1090/S0002-9947-96-01502-4.

    [6]

    J. Franks and M. Handel, Distortion elements in group actions on surfaces, Duke Math. J., 131 (2006), 441-468.doi: 10.1215/S0012-7094-06-13132-0.

    [7]

    Ś. R. Gal and J. Kędra, A cocycle on the group of symplectic diffeomorphisms, Advances in Geometry, 11 (2011), 73-88.doi: 10.1515/ADVGEOM.2010.039.

    [8]

    Ś. R. Gal and J. KędraA two-cocycle on the group of symplectic diffeomorphisms, Math. Z., to appear, arXiv:1010.0658.

    [9]

    J.-M. Gambaudo and É. Ghys, Enlacements asymptotiques, Topology, 36 (1997), 1355-1379.doi: 10.1016/S0040-9383(97)00001-3.

    [10]

    J.-M. Gambaudo and É. Ghys, Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynam. Systems, 24 (2004), 1591-1617.doi: 10.1017/S0143385703000737.

    [11]

    É. Ghys, Groups acting on the circle, Enseign. Math. (2), 47 (2001), 329-407.

    [12]

    M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math., 56 (1982), 5-99.

    [13]

    R. S. Ismagilov, M. Losik and P. W. Michor, A 2-cocycle on a symplectomorphism group, Mosc. Math. J., 6 (2006), 307-315, 407.

    [14]

    A. Lubotzky, S. Mozes and M. S. Raghunathan, The word and Riemannian metrics on lattices of semisimple groups, Inst. Hautes Études Sci. Publ. Math. No., 91 (2000), 5-53.

    [15]

    N. Monod, "Continuous Bounded Cohomology of Locally Compact Groups," Lecture Notes in Mathematics, 1758, Springer-Verlag, Berlin, 2001.

    [16]

    L. Polterovich, Growth of maps, distortion in groups and symplectic geometry, Invent. Math., 150 (2002), 655-686.doi: 10.1007/s00222-002-0251-x.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return