October  2011, 5(4): 665-709. doi: 10.3934/jmd.2011.5.665

Spectral analysis of the transfer operator for the Lorentz gas

1. 

Department of Mathematics and Computer Science, Fairfield University, Fairfield CT 06824, United States

2. 

Department of Mathematics and Statistics, University of Massachusetts, Amherst MA 01003, United States

Received  July 2011 Revised  February 2012 Published  March 2012

We study the billiard map associated with both the finite- and infinite-horizon Lorentz gases having smooth scatterers with strictly positive curvature. We introduce generalized function spaces (Banach spaces of distributions) on which the transfer operator is quasicompact. The mixing properties of the billiard map then imply the existence of a spectral gap and related statistical properties such as exponential decay of correlations and the Central Limit Theorem. Finer statistical properties of the map such as the identification of Ruelle resonances, large deviation estimates and an almost-sure invariance principle follow immediately once the spectral picture is established.
Citation: Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665
References:
[1]

Advanced Series in Nonlinear Dynamics, 16, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.  Google Scholar

[2]

in "Algebraic and Topological Dynamics" (eds. Sergiy Kolyada, Yuri Manin and Tom Ward), Contemporary Mathematics, 385, Amer. Math. Society, Providence, RI, (2005), 123-135.  Google Scholar

[3]

Annales de l'Institute Henri Poincaré Analyse Non Linéare, 26 (2009), 1453-1481. doi: 10.1016/j.anihpc.2009.01.001.  Google Scholar

[4]

J. Modern Dynam., 4 (2010), 91-137.  Google Scholar

[5]

Ann. Inst. Fourier (Grenoble), 57 (2007), 127-154. doi: 10.5802/aif.2253.  Google Scholar

[6]

Comm. Math. Phys., 156 (1993), 355-385. doi: 10.1007/BF02098487.  Google Scholar

[7]

Russian Math. Surveys, 45 (1990), 105-152. doi: 10.1070/RM1990v045n03ABEH002355.  Google Scholar

[8]

Russian Math. Surveys 46 (1991), 47-106. doi: 10.1070/RM1991v046n04ABEH002827.  Google Scholar

[9]

Nonlinearity, 15 (2002), 1905-1973. doi: 10.1088/0951-7715/15/6/309.  Google Scholar

[10]

Ergod. Th. and Dynam. Sys., 20 (2000), 697-708. doi: 10.1017/S0143385700000377.  Google Scholar

[11]

Ergod. Th. and Dynam. Sys., 21 (2001), 689-716. doi: 10.1017/S0143385701001341.  Google Scholar

[12]

Probability Theory and Related Fields, 138 (2007), 195-234. doi: 10.1007/s00440-006-0021-6.  Google Scholar

[13]

J. Stat. Phys., 94 (1999), 513-556. doi: 10.1023/A:1004581304939.  Google Scholar

[14]

J. Stat. Phys., 122 (2006), 1061-1094. doi: 10.1007/s10955-006-9036-8.  Google Scholar

[15]

Mathematical Surveys and Monographs, 127, AMS, Providence, RI, 2006.  Google Scholar

[16]

in "Hard Ball Systems and the Lorentz Gas" (ed. D. Szasz), Enclyclopaedia of Mathematical Sciences, 101, Springer, Berlin, (2000), 89-120.  Google Scholar

[17]

Second edition, Applications of Mathematics, 38, Springer-Verlag, New York, 1998.  Google Scholar

[18]

Trans. Amer. Math. Soc., 360 (2008), 4777-4814. doi: 10.1090/S0002-9947-08-04464-4.  Google Scholar

[19]

Ergod. Th. Dynam. Sys., 30 (2010), 1371-1398. doi: 10.1017/S0143385709000534.  Google Scholar

[20]

Bull. Soc. Math. France, 65 (1937), 132-148.  Google Scholar

[21]

Ergod. Th. and Dynam. Sys., 26 (2006), 189-217.  Google Scholar

[22]

Ann. Prob., 38 (2010), 1639-1671. doi: 10.1214/10-AOP525.  Google Scholar

[23]

Lectures Notes in Mathematics, 1766, Springer-Verlag, Berlin, 2001.  Google Scholar

[24]

Ann. of Math. (2), 52 (1950), 140-147.  Google Scholar

[25]

Second edition, Grundlehren der Mathematischen Wissenchaften, 132, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[26]

Comm. Math. Phys., 96 (1984), 181-193. doi: 10.1007/BF01240219.  Google Scholar

[27]

Annali della Scuola Normale Superiore di Pisa, Scienze Fisiche e Matematiche (4), 28 (1999), 141-152.  Google Scholar

[28]

Trans. Amer. Math. Soc., 186 (1973), 481-488. doi: 10.1090/S0002-9947-1973-0335758-1.  Google Scholar

[29]

in "Dynamical Systems," Part II, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Normale Superiore, Pisa, (2003), 185-237.  Google Scholar

[30]

Discrete and Continuous Dynamical Systems, 13 (2005), 1203-1215. doi: 10.3934/dcds.2005.13.1203.  Google Scholar

[31]

Commun. Math. Phys., 260 (2005), 131-146. doi: 10.1007/s00220-005-1407-5.  Google Scholar

[32]

Trans. Amer. Math. Soc., 360 (2008), 6661-6676. doi: 10.1090/S0002-9947-08-04520-0.  Google Scholar

[33]

Teor. Veroyatnost. i Primenen, 2 (1957), 389-416.  Google Scholar

[34]

Annals of Math. (2), 118 (1983), 573-591. doi: 10.2307/2006982.  Google Scholar

[35]

Astérisque, 187-188 (1990), 268 pp.  Google Scholar

[36]

Ergod. Th. and Dynam. Systems, 28 (2008), 587-612. doi: 10.1017/S0143385707000478.  Google Scholar

[37]

J. Stat. Phys., 44 (1986), 281-292. doi: 10.1007/BF01011300.  Google Scholar

[38]

J. Differential Geom., 25 (1987), 99-116.  Google Scholar

[39]

Nonlinearity, 5 (1992), 1237-1263. doi: 10.1088/0951-7715/5/6/003.  Google Scholar

[40]

"XIth International Congress of Mathematical Physics" (Paris, 1994), Internat. Press, Cambridge, MA, (1995), 297-303.  Google Scholar

[41]

Ergod. Th. and Dynam. Sys., 16 (1996), 805-819. doi: 10.1017/S0143385700009111.  Google Scholar

[42]

Israel J. Math., 116 (2000), 223-248. doi: 10.1007/BF02773219.  Google Scholar

[43]

Comm. Math. Phys., 208 (2000), 605-622. doi: 10.1007/s002200050003.  Google Scholar

[44]

Invent. Math., 143 (2001), 349-373. doi: 10.1007/PL00005797.  Google Scholar

[45]

Annals of Math. (2), 147 (1998), 585-650. doi: 10.2307/120960.  Google Scholar

show all references

References:
[1]

Advanced Series in Nonlinear Dynamics, 16, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.  Google Scholar

[2]

in "Algebraic and Topological Dynamics" (eds. Sergiy Kolyada, Yuri Manin and Tom Ward), Contemporary Mathematics, 385, Amer. Math. Society, Providence, RI, (2005), 123-135.  Google Scholar

[3]

Annales de l'Institute Henri Poincaré Analyse Non Linéare, 26 (2009), 1453-1481. doi: 10.1016/j.anihpc.2009.01.001.  Google Scholar

[4]

J. Modern Dynam., 4 (2010), 91-137.  Google Scholar

[5]

Ann. Inst. Fourier (Grenoble), 57 (2007), 127-154. doi: 10.5802/aif.2253.  Google Scholar

[6]

Comm. Math. Phys., 156 (1993), 355-385. doi: 10.1007/BF02098487.  Google Scholar

[7]

Russian Math. Surveys, 45 (1990), 105-152. doi: 10.1070/RM1990v045n03ABEH002355.  Google Scholar

[8]

Russian Math. Surveys 46 (1991), 47-106. doi: 10.1070/RM1991v046n04ABEH002827.  Google Scholar

[9]

Nonlinearity, 15 (2002), 1905-1973. doi: 10.1088/0951-7715/15/6/309.  Google Scholar

[10]

Ergod. Th. and Dynam. Sys., 20 (2000), 697-708. doi: 10.1017/S0143385700000377.  Google Scholar

[11]

Ergod. Th. and Dynam. Sys., 21 (2001), 689-716. doi: 10.1017/S0143385701001341.  Google Scholar

[12]

Probability Theory and Related Fields, 138 (2007), 195-234. doi: 10.1007/s00440-006-0021-6.  Google Scholar

[13]

J. Stat. Phys., 94 (1999), 513-556. doi: 10.1023/A:1004581304939.  Google Scholar

[14]

J. Stat. Phys., 122 (2006), 1061-1094. doi: 10.1007/s10955-006-9036-8.  Google Scholar

[15]

Mathematical Surveys and Monographs, 127, AMS, Providence, RI, 2006.  Google Scholar

[16]

in "Hard Ball Systems and the Lorentz Gas" (ed. D. Szasz), Enclyclopaedia of Mathematical Sciences, 101, Springer, Berlin, (2000), 89-120.  Google Scholar

[17]

Second edition, Applications of Mathematics, 38, Springer-Verlag, New York, 1998.  Google Scholar

[18]

Trans. Amer. Math. Soc., 360 (2008), 4777-4814. doi: 10.1090/S0002-9947-08-04464-4.  Google Scholar

[19]

Ergod. Th. Dynam. Sys., 30 (2010), 1371-1398. doi: 10.1017/S0143385709000534.  Google Scholar

[20]

Bull. Soc. Math. France, 65 (1937), 132-148.  Google Scholar

[21]

Ergod. Th. and Dynam. Sys., 26 (2006), 189-217.  Google Scholar

[22]

Ann. Prob., 38 (2010), 1639-1671. doi: 10.1214/10-AOP525.  Google Scholar

[23]

Lectures Notes in Mathematics, 1766, Springer-Verlag, Berlin, 2001.  Google Scholar

[24]

Ann. of Math. (2), 52 (1950), 140-147.  Google Scholar

[25]

Second edition, Grundlehren der Mathematischen Wissenchaften, 132, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[26]

Comm. Math. Phys., 96 (1984), 181-193. doi: 10.1007/BF01240219.  Google Scholar

[27]

Annali della Scuola Normale Superiore di Pisa, Scienze Fisiche e Matematiche (4), 28 (1999), 141-152.  Google Scholar

[28]

Trans. Amer. Math. Soc., 186 (1973), 481-488. doi: 10.1090/S0002-9947-1973-0335758-1.  Google Scholar

[29]

in "Dynamical Systems," Part II, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Normale Superiore, Pisa, (2003), 185-237.  Google Scholar

[30]

Discrete and Continuous Dynamical Systems, 13 (2005), 1203-1215. doi: 10.3934/dcds.2005.13.1203.  Google Scholar

[31]

Commun. Math. Phys., 260 (2005), 131-146. doi: 10.1007/s00220-005-1407-5.  Google Scholar

[32]

Trans. Amer. Math. Soc., 360 (2008), 6661-6676. doi: 10.1090/S0002-9947-08-04520-0.  Google Scholar

[33]

Teor. Veroyatnost. i Primenen, 2 (1957), 389-416.  Google Scholar

[34]

Annals of Math. (2), 118 (1983), 573-591. doi: 10.2307/2006982.  Google Scholar

[35]

Astérisque, 187-188 (1990), 268 pp.  Google Scholar

[36]

Ergod. Th. and Dynam. Systems, 28 (2008), 587-612. doi: 10.1017/S0143385707000478.  Google Scholar

[37]

J. Stat. Phys., 44 (1986), 281-292. doi: 10.1007/BF01011300.  Google Scholar

[38]

J. Differential Geom., 25 (1987), 99-116.  Google Scholar

[39]

Nonlinearity, 5 (1992), 1237-1263. doi: 10.1088/0951-7715/5/6/003.  Google Scholar

[40]

"XIth International Congress of Mathematical Physics" (Paris, 1994), Internat. Press, Cambridge, MA, (1995), 297-303.  Google Scholar

[41]

Ergod. Th. and Dynam. Sys., 16 (1996), 805-819. doi: 10.1017/S0143385700009111.  Google Scholar

[42]

Israel J. Math., 116 (2000), 223-248. doi: 10.1007/BF02773219.  Google Scholar

[43]

Comm. Math. Phys., 208 (2000), 605-622. doi: 10.1007/s002200050003.  Google Scholar

[44]

Invent. Math., 143 (2001), 349-373. doi: 10.1007/PL00005797.  Google Scholar

[45]

Annals of Math. (2), 147 (1998), 585-650. doi: 10.2307/120960.  Google Scholar

[1]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[2]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[3]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[4]

Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042

[5]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[6]

Palash Sarkar, Subhadip Singha. Classical reduction of gap SVP to LWE: A concrete security analysis. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021004

[7]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021, 3 (1) : 49-66. doi: 10.3934/fods.2021005

[8]

Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei. HERMES: Persistent spectral graph software. Foundations of Data Science, 2021, 3 (1) : 67-97. doi: 10.3934/fods.2021006

[9]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[10]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[11]

Jaume Llibre, Claudia Valls. Rational limit cycles of Abel equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1077-1089. doi: 10.3934/cpaa.2021007

[12]

Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015

[13]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021008

[14]

Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021037

[15]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023

[16]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[17]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[18]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[19]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[20]

Thomas Kappeler, Yannick Widmer. On nomalized differentials on spectral curves associated with the sinh-Gordon equation. Journal of Geometric Mechanics, 2021, 13 (1) : 73-143. doi: 10.3934/jgm.2020023

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]