October  2011, 5(4): 665-709. doi: 10.3934/jmd.2011.5.665

Spectral analysis of the transfer operator for the Lorentz gas

1. 

Department of Mathematics and Computer Science, Fairfield University, Fairfield CT 06824, United States

2. 

Department of Mathematics and Statistics, University of Massachusetts, Amherst MA 01003, United States

Received  July 2011 Revised  February 2012 Published  March 2012

We study the billiard map associated with both the finite- and infinite-horizon Lorentz gases having smooth scatterers with strictly positive curvature. We introduce generalized function spaces (Banach spaces of distributions) on which the transfer operator is quasicompact. The mixing properties of the billiard map then imply the existence of a spectral gap and related statistical properties such as exponential decay of correlations and the Central Limit Theorem. Finer statistical properties of the map such as the identification of Ruelle resonances, large deviation estimates and an almost-sure invariance principle follow immediately once the spectral picture is established.
Citation: Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665
References:
[1]

V. Baladi, "Positive Transfer Operators and Decay of Correlations,", Advanced Series in Nonlinear Dynamics, 16 (2000).   Google Scholar

[2]

V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: $\C^\infty$ foliations,, in, 385 (2005), 123.   Google Scholar

[3]

V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation,, Annales de l'Institute Henri Poincaré Analyse Non Linéare, 26 (2009), 1453.  doi: 10.1016/j.anihpc.2009.01.001.  Google Scholar

[4]

V. Baladi and S. Gouëzel, Banach spaces for piecewise cone-hyperbolic maps,, J. Modern Dynam., 4 (2010), 91.   Google Scholar

[5]

V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms,, Ann. Inst. Fourier (Grenoble), 57 (2007), 127.  doi: 10.5802/aif.2253.  Google Scholar

[6]

V. Baladi and L.-S.Young, On the spectra of randomly perturbed expanding maps,, Comm. Math. Phys., 156 (1993), 355.  doi: 10.1007/BF02098487.  Google Scholar

[7]

L. Bunimovich, Y. G. Sinaĭ and N. Chernov, Markov partitions for two-dimensional hyperbolic billiards,, Russian Math. Surveys, 45 (1990), 105.  doi: 10.1070/RM1990v045n03ABEH002355.  Google Scholar

[8]

L. Bunimovich, Y. G. Sinaĭ and N. Chernov, Statistical properties of two-dimensional hyperbolic billiards,, Russian Math. Surveys {\bf 46} (1991), 46 (1991), 47.  doi: 10.1070/RM1991v046n04ABEH002827.  Google Scholar

[9]

M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps,, Nonlinearity, 15 (2002), 1905.  doi: 10.1088/0951-7715/15/6/309.  Google Scholar

[10]

J. Buzzi, Absolutely continuous invariant probability measures for arbitrary expanding piecewise $\mathbbR$-analytic mappings of the plane,, Ergod. Th. and Dynam. Sys., 20 (2000), 697.  doi: 10.1017/S0143385700000377.  Google Scholar

[11]

J. Buzzi and G. Keller, Zeta functions and transfer operators for multidimensional piecewise affine and expanding maps,, Ergod. Th. and Dynam. Sys., 21 (2001), 689.  doi: 10.1017/S0143385701001341.  Google Scholar

[12]

J.-R. Chazottes and S. Gouëzel, On almost-sure versions of classical theorems for dynamical systems,, Probability Theory and Related Fields, 138 (2007), 195.  doi: 10.1007/s00440-006-0021-6.  Google Scholar

[13]

N. Chernov, Decay of correlations and dispersing billiards,, J. Stat. Phys., 94 (1999), 513.  doi: 10.1023/A:1004581304939.  Google Scholar

[14]

N. Chernov, Advanced statistical properties of dispersing billiards,, J. Stat. Phys., 122 (2006), 1061.  doi: 10.1007/s10955-006-9036-8.  Google Scholar

[15]

N. Chernov and R. Markarian, "Chaotic Billiards,", Mathematical Surveys and Monographs, 127 (2006).   Google Scholar

[16]

N. Chernov and L.-S. Young, Decay of correlations for Lorentz gases and hard balls,, in, 101 (2000), 89.   Google Scholar

[17]

A. Dembo and O. Zeitouni, "Large Deviations Techniques and Applications,", Second edition, 38 (1998).   Google Scholar

[18]

M. Demers and C. Liverani, Stability of statistical properties in two-dimensional piecewise hyperbolic maps,, Trans. Amer. Math. Soc., 360 (2008), 4777.  doi: 10.1090/S0002-9947-08-04464-4.  Google Scholar

[19]

M. Demers, Functional norms for Young towers,, Ergod. Th. Dynam. Sys., 30 (2010), 1371.  doi: 10.1017/S0143385709000534.  Google Scholar

[20]

W. Doeblin and R. Fortet, Sur des chaînes à liaisons complètes,, Bull. Soc. Math. France, 65 (1937), 132.   Google Scholar

[21]

S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems,, Ergod. Th. and Dynam. Sys., 26 (2006), 189.   Google Scholar

[22]

S. Gouëzel, Almost sure invariance principle for dynamical systems by spectral methods,, Ann. Prob., 38 (2010), 1639.  doi: 10.1214/10-AOP525.  Google Scholar

[23]

H. Hennion and L. Hevré, "Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness,", Lectures Notes in Mathematics, 1766 (1766).   Google Scholar

[24]

C. T. Ionescu-Tulcea and G. Marinescu, Théorie ergodique pour des classes d'opérations non complètement continues,, Ann. of Math. (2), 52 (1950), 140.   Google Scholar

[25]

T. Kato, "Perturbation Theory for Linear Operators,", Second edition, 132 (1976).   Google Scholar

[26]

G. Keller, On the rate of convergence to equilibrium in one-dimensional systems,, Comm. Math. Phys., 96 (1984), 181.  doi: 10.1007/BF01240219.  Google Scholar

[27]

G. Keller and C. Liverani, Stability of the spectrum for transfer operators,, Annali della Scuola Normale Superiore di Pisa, 28 (1999), 141.   Google Scholar

[28]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations,, Trans. Amer. Math. Soc., 186 (1973), 481.  doi: 10.1090/S0002-9947-1973-0335758-1.  Google Scholar

[29]

C. Liverani, Invariant measures and their properties. A functional analytic point of view,, in, (2003), 185.   Google Scholar

[30]

C. Liverani, Fredholm determinants, Anosov maps and Ruelle resonances,, Discrete and Continuous Dynamical Systems, 13 (2005), 1203.  doi: 10.3934/dcds.2005.13.1203.  Google Scholar

[31]

I. Melbourne and M. Nicol, Almost sure invariance principle for nonuniformly hyperbolic systems,, Commun. Math. Phys., 260 (2005), 131.  doi: 10.1007/s00220-005-1407-5.  Google Scholar

[32]

I. Melbourne and M. Nicol, Large deviations for nonuniformly hyperbolic systems,, Trans. Amer. Math. Soc., 360 (2008), 6661.  doi: 10.1090/S0002-9947-08-04520-0.  Google Scholar

[33]

S. V. Nagaev, Some limit theorems for stationary Markov chains, (Russian),, Teor. Veroyatnost. i Primenen, 2 (1957), 389.   Google Scholar

[34]

W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows,, Annals of Math. (2), 118 (1983), 573.  doi: 10.2307/2006982.  Google Scholar

[35]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics,, Astérisque, 187-188 (1990), 187.   Google Scholar

[36]

L. Rey-Bellet and L.-S. Young, Large deviations in non-uniformly hyperbolic dynamical systems,, Ergod. Th. and Dynam. Systems, 28 (2008), 587.  doi: 10.1017/S0143385707000478.  Google Scholar

[37]

D. Ruelle, Locating resonances for Axiom A dynamical systems,, J. Stat. Phys., 44 (1986), 281.  doi: 10.1007/BF01011300.  Google Scholar

[38]

D. Ruelle, Resonances for Axiom $A$ flows,, J. Differential Geom., 25 (1987), 99.   Google Scholar

[39]

H. H. Rugh, The correlation spectrum for hyperbolic analytic maps,, Nonlinearity, 5 (1992), 1237.  doi: 10.1088/0951-7715/5/6/003.  Google Scholar

[40]

H. H. Rugh, Fredholm determinants for real-analytic hyperbolic diffeomorphisms of surfaces,, XIth International Congress of Mathematical Physics, (1995), 297.   Google Scholar

[41]

H. H. Rugh, Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems,, Ergod. Th. and Dynam. Sys., 16 (1996), 805.  doi: 10.1017/S0143385700009111.  Google Scholar

[42]

B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps,, Israel J. Math., 116 (2000), 223.  doi: 10.1007/BF02773219.  Google Scholar

[43]

M. Tsujii, Absolutely continuous invariant measures for piecewise real-analytic expanding maps on the plane,, Comm. Math. Phys., 208 (2000), 605.  doi: 10.1007/s002200050003.  Google Scholar

[44]

M. Tsujii, Absolutely continuous invariant measures for expanding piecewise linear maps,, Invent. Math., 143 (2001), 349.  doi: 10.1007/PL00005797.  Google Scholar

[45]

L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity,, Annals of Math. (2), 147 (1998), 585.  doi: 10.2307/120960.  Google Scholar

show all references

References:
[1]

V. Baladi, "Positive Transfer Operators and Decay of Correlations,", Advanced Series in Nonlinear Dynamics, 16 (2000).   Google Scholar

[2]

V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: $\C^\infty$ foliations,, in, 385 (2005), 123.   Google Scholar

[3]

V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation,, Annales de l'Institute Henri Poincaré Analyse Non Linéare, 26 (2009), 1453.  doi: 10.1016/j.anihpc.2009.01.001.  Google Scholar

[4]

V. Baladi and S. Gouëzel, Banach spaces for piecewise cone-hyperbolic maps,, J. Modern Dynam., 4 (2010), 91.   Google Scholar

[5]

V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms,, Ann. Inst. Fourier (Grenoble), 57 (2007), 127.  doi: 10.5802/aif.2253.  Google Scholar

[6]

V. Baladi and L.-S.Young, On the spectra of randomly perturbed expanding maps,, Comm. Math. Phys., 156 (1993), 355.  doi: 10.1007/BF02098487.  Google Scholar

[7]

L. Bunimovich, Y. G. Sinaĭ and N. Chernov, Markov partitions for two-dimensional hyperbolic billiards,, Russian Math. Surveys, 45 (1990), 105.  doi: 10.1070/RM1990v045n03ABEH002355.  Google Scholar

[8]

L. Bunimovich, Y. G. Sinaĭ and N. Chernov, Statistical properties of two-dimensional hyperbolic billiards,, Russian Math. Surveys {\bf 46} (1991), 46 (1991), 47.  doi: 10.1070/RM1991v046n04ABEH002827.  Google Scholar

[9]

M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps,, Nonlinearity, 15 (2002), 1905.  doi: 10.1088/0951-7715/15/6/309.  Google Scholar

[10]

J. Buzzi, Absolutely continuous invariant probability measures for arbitrary expanding piecewise $\mathbbR$-analytic mappings of the plane,, Ergod. Th. and Dynam. Sys., 20 (2000), 697.  doi: 10.1017/S0143385700000377.  Google Scholar

[11]

J. Buzzi and G. Keller, Zeta functions and transfer operators for multidimensional piecewise affine and expanding maps,, Ergod. Th. and Dynam. Sys., 21 (2001), 689.  doi: 10.1017/S0143385701001341.  Google Scholar

[12]

J.-R. Chazottes and S. Gouëzel, On almost-sure versions of classical theorems for dynamical systems,, Probability Theory and Related Fields, 138 (2007), 195.  doi: 10.1007/s00440-006-0021-6.  Google Scholar

[13]

N. Chernov, Decay of correlations and dispersing billiards,, J. Stat. Phys., 94 (1999), 513.  doi: 10.1023/A:1004581304939.  Google Scholar

[14]

N. Chernov, Advanced statistical properties of dispersing billiards,, J. Stat. Phys., 122 (2006), 1061.  doi: 10.1007/s10955-006-9036-8.  Google Scholar

[15]

N. Chernov and R. Markarian, "Chaotic Billiards,", Mathematical Surveys and Monographs, 127 (2006).   Google Scholar

[16]

N. Chernov and L.-S. Young, Decay of correlations for Lorentz gases and hard balls,, in, 101 (2000), 89.   Google Scholar

[17]

A. Dembo and O. Zeitouni, "Large Deviations Techniques and Applications,", Second edition, 38 (1998).   Google Scholar

[18]

M. Demers and C. Liverani, Stability of statistical properties in two-dimensional piecewise hyperbolic maps,, Trans. Amer. Math. Soc., 360 (2008), 4777.  doi: 10.1090/S0002-9947-08-04464-4.  Google Scholar

[19]

M. Demers, Functional norms for Young towers,, Ergod. Th. Dynam. Sys., 30 (2010), 1371.  doi: 10.1017/S0143385709000534.  Google Scholar

[20]

W. Doeblin and R. Fortet, Sur des chaînes à liaisons complètes,, Bull. Soc. Math. France, 65 (1937), 132.   Google Scholar

[21]

S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems,, Ergod. Th. and Dynam. Sys., 26 (2006), 189.   Google Scholar

[22]

S. Gouëzel, Almost sure invariance principle for dynamical systems by spectral methods,, Ann. Prob., 38 (2010), 1639.  doi: 10.1214/10-AOP525.  Google Scholar

[23]

H. Hennion and L. Hevré, "Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness,", Lectures Notes in Mathematics, 1766 (1766).   Google Scholar

[24]

C. T. Ionescu-Tulcea and G. Marinescu, Théorie ergodique pour des classes d'opérations non complètement continues,, Ann. of Math. (2), 52 (1950), 140.   Google Scholar

[25]

T. Kato, "Perturbation Theory for Linear Operators,", Second edition, 132 (1976).   Google Scholar

[26]

G. Keller, On the rate of convergence to equilibrium in one-dimensional systems,, Comm. Math. Phys., 96 (1984), 181.  doi: 10.1007/BF01240219.  Google Scholar

[27]

G. Keller and C. Liverani, Stability of the spectrum for transfer operators,, Annali della Scuola Normale Superiore di Pisa, 28 (1999), 141.   Google Scholar

[28]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations,, Trans. Amer. Math. Soc., 186 (1973), 481.  doi: 10.1090/S0002-9947-1973-0335758-1.  Google Scholar

[29]

C. Liverani, Invariant measures and their properties. A functional analytic point of view,, in, (2003), 185.   Google Scholar

[30]

C. Liverani, Fredholm determinants, Anosov maps and Ruelle resonances,, Discrete and Continuous Dynamical Systems, 13 (2005), 1203.  doi: 10.3934/dcds.2005.13.1203.  Google Scholar

[31]

I. Melbourne and M. Nicol, Almost sure invariance principle for nonuniformly hyperbolic systems,, Commun. Math. Phys., 260 (2005), 131.  doi: 10.1007/s00220-005-1407-5.  Google Scholar

[32]

I. Melbourne and M. Nicol, Large deviations for nonuniformly hyperbolic systems,, Trans. Amer. Math. Soc., 360 (2008), 6661.  doi: 10.1090/S0002-9947-08-04520-0.  Google Scholar

[33]

S. V. Nagaev, Some limit theorems for stationary Markov chains, (Russian),, Teor. Veroyatnost. i Primenen, 2 (1957), 389.   Google Scholar

[34]

W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows,, Annals of Math. (2), 118 (1983), 573.  doi: 10.2307/2006982.  Google Scholar

[35]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics,, Astérisque, 187-188 (1990), 187.   Google Scholar

[36]

L. Rey-Bellet and L.-S. Young, Large deviations in non-uniformly hyperbolic dynamical systems,, Ergod. Th. and Dynam. Systems, 28 (2008), 587.  doi: 10.1017/S0143385707000478.  Google Scholar

[37]

D. Ruelle, Locating resonances for Axiom A dynamical systems,, J. Stat. Phys., 44 (1986), 281.  doi: 10.1007/BF01011300.  Google Scholar

[38]

D. Ruelle, Resonances for Axiom $A$ flows,, J. Differential Geom., 25 (1987), 99.   Google Scholar

[39]

H. H. Rugh, The correlation spectrum for hyperbolic analytic maps,, Nonlinearity, 5 (1992), 1237.  doi: 10.1088/0951-7715/5/6/003.  Google Scholar

[40]

H. H. Rugh, Fredholm determinants for real-analytic hyperbolic diffeomorphisms of surfaces,, XIth International Congress of Mathematical Physics, (1995), 297.   Google Scholar

[41]

H. H. Rugh, Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems,, Ergod. Th. and Dynam. Sys., 16 (1996), 805.  doi: 10.1017/S0143385700009111.  Google Scholar

[42]

B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps,, Israel J. Math., 116 (2000), 223.  doi: 10.1007/BF02773219.  Google Scholar

[43]

M. Tsujii, Absolutely continuous invariant measures for piecewise real-analytic expanding maps on the plane,, Comm. Math. Phys., 208 (2000), 605.  doi: 10.1007/s002200050003.  Google Scholar

[44]

M. Tsujii, Absolutely continuous invariant measures for expanding piecewise linear maps,, Invent. Math., 143 (2001), 349.  doi: 10.1007/PL00005797.  Google Scholar

[45]

L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity,, Annals of Math. (2), 147 (1998), 585.  doi: 10.2307/120960.  Google Scholar

[1]

Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014

[2]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[3]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[4]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[5]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[6]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[7]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[8]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[9]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[10]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[11]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[12]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[13]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[14]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[15]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[16]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[17]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[18]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[19]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[20]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]