October  2011, 5(4): 711-746. doi: 10.3934/jmd.2011.5.711

Ziggurats and rotation numbers

1. 

DPMMS, University of Cambridge, Cambridge CB3 0WA, United Kingdom

2. 

Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, United States

Received  October 2011 Revised  November 2011 Published  March 2012

We establish the existence of new rigidity and rationality phenomena in the theory of nonabelian group actions on the circle and introduce tools to translate questions about the existence of actions with prescribed dynamics into finite combinatorics. A special case of our theory gives a very short new proof of Naimi's theorem (i.e., the conjecture of Jankins-Neumann) which was the last step in the classification of taut foliations of Seifert fibered spaces.
Citation: Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711
References:
[1]

R. Bowen, Hausdorff dimension of quasicircles,, Inst. Hautes Études Sci. Publ. Math. No., 50 (1979), 11.   Google Scholar

[2]

D. Calegari, Dynamical forcing of circular groups,, Trans. Amer. Math. Soc., 358 (2006), 3473.  doi: 10.1090/S0002-9947-05-03754-2.  Google Scholar

[3]

D. Calegari, Stable commutator length is rational in free groups,, Jour. Amer. Math. Soc., 22 (2009), 941.  doi: 10.1090/S0894-0347-09-00634-1.  Google Scholar

[4]

D. Calegari, Faces of the scl norm ball,, Geom. Topol., 13 (2009), 1313.  doi: 10.2140/gt.2009.13.1313.  Google Scholar

[5]

D. Calegari, "scl,", MSJ Memoirs, 20 (2009).   Google Scholar

[6]

D. Calegari and K. Fujiwara, Combable functions, quasimorphisms, and the central limit theorem,, Erg. Theory Dyn. Sys., 30 (2010), 1343.  doi: 10.1017/S0143385709000662.  Google Scholar

[7]

D. Calegari and J. Louwsma, Immersed surfaces in the modular orbifold,, Proc. Amer. Math. Soc., 139 (2011), 2295.  doi: 10.1090/S0002-9939-2011-10911-0.  Google Scholar

[8]

D. Eisenbud, U. Hirsch and W. Neumann, Transverse foliations of Seifert bundles and self-homeomorphism of the circle,, Comment. Math. Helv., 56 (1981), 638.  doi: 10.1007/BF02566232.  Google Scholar

[9]

É. Ghys, Groupes d'homéomorphismes du cercle et cohomologie bornée,, in, 58 (1987), 81.  doi: 10.1090/conm/058.3/893858.  Google Scholar

[10]

É. Ghys, Groups acting on the circle,, Enseign. Math. (2), 47 (2001), 329.   Google Scholar

[11]

M. Herman, Sur la conjugaison différentiable des diffeomorphismes du cercle à des rotations,, Inst. Hautes Études Sci. Publ. Math. No., 49 (1979), 5.   Google Scholar

[12]

M. Jankins and W. Neumann, Rotation numbers of products of circle homeomorphisms,, Math. Ann., 271 (1985), 381.  doi: 10.1007/BF01456075.  Google Scholar

[13]

A. Katok and B. Hasselblatt, "An Introduction to the Modern Theory of Dynamical Systems,", Encyclopedia of Mathematics and its Applications, 54 (1995).   Google Scholar

[14]

S. Katok, "Fuchsian Groups,", Chicago Lectures in Mathematics, (1992).   Google Scholar

[15]

S. Matsumoto, Some remarks on foliated $S^1$ bundles,, Invent. Math., 90 (1987), 343.  doi: 10.1007/BF01388709.  Google Scholar

[16]

W. de Melo and S. van Strien, "One-Dimensional Dynamics,", Ergeb. der Math. und ihrer Grenz. (3), 25 (1993).   Google Scholar

[17]

R. Naimi, Foliations transverse to fibers of Seifert manifolds,, Comment. Math. Helv., 69 (1994), 155.  doi: 10.1007/BF02564479.  Google Scholar

[18]

F. Przytycki and M. Urbański, Conformal fractals: Ergodic theory methods,, LMS Lect. Note Ser., 371 (2010).   Google Scholar

[19]

G. Światek, Rational rotation numbers for maps of the circle,, Comm. Math. Phys., 119 (1988), 109.  doi: 10.1007/BF01218263.  Google Scholar

[20]

W. Thurston, Three-manifolds, foliations and circles, I,, preprint, ().   Google Scholar

[21]

M. Urbański, Parabolic Cantor sets,, Fund. Math., 151 (1996), 241.   Google Scholar

[22]

J.-C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne,, Ann. Sci. École Norm. Sup. (4), 17 (1984), 333.   Google Scholar

show all references

References:
[1]

R. Bowen, Hausdorff dimension of quasicircles,, Inst. Hautes Études Sci. Publ. Math. No., 50 (1979), 11.   Google Scholar

[2]

D. Calegari, Dynamical forcing of circular groups,, Trans. Amer. Math. Soc., 358 (2006), 3473.  doi: 10.1090/S0002-9947-05-03754-2.  Google Scholar

[3]

D. Calegari, Stable commutator length is rational in free groups,, Jour. Amer. Math. Soc., 22 (2009), 941.  doi: 10.1090/S0894-0347-09-00634-1.  Google Scholar

[4]

D. Calegari, Faces of the scl norm ball,, Geom. Topol., 13 (2009), 1313.  doi: 10.2140/gt.2009.13.1313.  Google Scholar

[5]

D. Calegari, "scl,", MSJ Memoirs, 20 (2009).   Google Scholar

[6]

D. Calegari and K. Fujiwara, Combable functions, quasimorphisms, and the central limit theorem,, Erg. Theory Dyn. Sys., 30 (2010), 1343.  doi: 10.1017/S0143385709000662.  Google Scholar

[7]

D. Calegari and J. Louwsma, Immersed surfaces in the modular orbifold,, Proc. Amer. Math. Soc., 139 (2011), 2295.  doi: 10.1090/S0002-9939-2011-10911-0.  Google Scholar

[8]

D. Eisenbud, U. Hirsch and W. Neumann, Transverse foliations of Seifert bundles and self-homeomorphism of the circle,, Comment. Math. Helv., 56 (1981), 638.  doi: 10.1007/BF02566232.  Google Scholar

[9]

É. Ghys, Groupes d'homéomorphismes du cercle et cohomologie bornée,, in, 58 (1987), 81.  doi: 10.1090/conm/058.3/893858.  Google Scholar

[10]

É. Ghys, Groups acting on the circle,, Enseign. Math. (2), 47 (2001), 329.   Google Scholar

[11]

M. Herman, Sur la conjugaison différentiable des diffeomorphismes du cercle à des rotations,, Inst. Hautes Études Sci. Publ. Math. No., 49 (1979), 5.   Google Scholar

[12]

M. Jankins and W. Neumann, Rotation numbers of products of circle homeomorphisms,, Math. Ann., 271 (1985), 381.  doi: 10.1007/BF01456075.  Google Scholar

[13]

A. Katok and B. Hasselblatt, "An Introduction to the Modern Theory of Dynamical Systems,", Encyclopedia of Mathematics and its Applications, 54 (1995).   Google Scholar

[14]

S. Katok, "Fuchsian Groups,", Chicago Lectures in Mathematics, (1992).   Google Scholar

[15]

S. Matsumoto, Some remarks on foliated $S^1$ bundles,, Invent. Math., 90 (1987), 343.  doi: 10.1007/BF01388709.  Google Scholar

[16]

W. de Melo and S. van Strien, "One-Dimensional Dynamics,", Ergeb. der Math. und ihrer Grenz. (3), 25 (1993).   Google Scholar

[17]

R. Naimi, Foliations transverse to fibers of Seifert manifolds,, Comment. Math. Helv., 69 (1994), 155.  doi: 10.1007/BF02564479.  Google Scholar

[18]

F. Przytycki and M. Urbański, Conformal fractals: Ergodic theory methods,, LMS Lect. Note Ser., 371 (2010).   Google Scholar

[19]

G. Światek, Rational rotation numbers for maps of the circle,, Comm. Math. Phys., 119 (1988), 109.  doi: 10.1007/BF01218263.  Google Scholar

[20]

W. Thurston, Three-manifolds, foliations and circles, I,, preprint, ().   Google Scholar

[21]

M. Urbański, Parabolic Cantor sets,, Fund. Math., 151 (1996), 241.   Google Scholar

[22]

J.-C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne,, Ann. Sci. École Norm. Sup. (4), 17 (1984), 333.   Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[2]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[3]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[4]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[5]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[6]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[7]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[8]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[9]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[10]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[11]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[12]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[13]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[14]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[15]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[18]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[19]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]