Citation: |
[1] |
V. M. Alekseev and M. V. Yakobson, Symbolic dynamics and hyperbolic dynamic systems, Phys. Rep., 75 (1981), 287-325.doi: 10.1016/0370-1573(81)90186-1. |
[2] |
D. Bohnet, "Partially Hyperbolic Systems with a Compact Center Foliation with Finite Holonomy," Thesis, 2011. |
[3] |
C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds, Topology, 44 (2005), 475-508.doi: 10.1016/j.top.2004.10.009. |
[4] |
R. Bowen, Periodic points and measures for axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397. |
[5] |
M. Brin, D. Burago and S. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group, in "Modern Dynamical Systems and Applications," 307-312, Cambridge Univ. Press, Cambridge, 2004. |
[6] |
D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups, J. Mod. Dyn., 2 (2008), 541-580.doi: 10.3934/jmd.2008.2.541. |
[7] |
A. Candel and L. Conlon, "Foliations. I," Graduate Studies in Mathematics, 23, American Mathematical Society, Providence, RI, 2000. |
[8] | |
[9] |
Y. Coudene, Pictures of hyperbolic dynamical systems, Notices Amer. Math. Soc., 53 (2006), 8-13. |
[10] |
R. Edwards, K. Millett and D. Sullivan, Foliations with all leaves compact, Topology, 16 (1977), 13-32.doi: 10.1016/0040-9383(77)90028-3. |
[11] |
D. B. A. Epstein, Periodic flows on three-manifolds, Ann. of Math. (2), 95 (1972), 66-82.doi: 10.2307/1970854. |
[12] |
D. B. A. Epstein, Foliations with all leaves compact, Ann. Inst. Fourier (Grenoble), 26 (1976), 265-282.doi: 10.5802/aif.607. |
[13] |
D. B. A. Epstein and E. Vogt, A counterexample to the periodic orbit conjecture in codimension $3$, Ann. of Math. (2), 108 (1978), 539-552.doi: 10.2307/1971187. |
[14] |
J. Franks, Anosov diffeomorphisms, in "1970 Global Analysis" (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 61-93. |
[15] |
K. Hiraide, A simple proof of the Franks-Newhouse theorem on codimension-one Anosov diffeomorphisms, Ergodic Theory Dynam. Systems, 21 (2001), 801-806.doi: 10.1017/S0143385701001390. |
[16] |
J. G. Hocking and G. S. Young, "Topology," Second edition, Dover Publications, Inc., New York, 1988. |
[17] |
R. Langevin, A list of questions about foliations, in "Differential Topology, Foliations, and Group Actions" (Rio de Janeiro, 1992), Contemp. Math., 161, Amer. Math. Soc., Providence, RI, (1994), 59-80. |
[18] |
D. Montgomery, Pointwise periodic homeomorphisms, Amer. J. Math., 59 (1937), 118-120.doi: 10.2307/2371565. |
[19] |
S. E. Newhouse, On codimension one Anosov diffeomorphisms, Amer. J. Math., 92 (1970), 761-770.doi: 10.2307/2373372. |
[20] |
F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics, in "Partially Hyperbolic Dynamics, Laminations, and Teichmüler Flow," Fields Inst. Commun., 51, Amer. Math. Soc., Providence, RI, (2007), 35-87. |
[21] |
F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, private communication. |
[22] |
D. Sullivan, A counterexample to the periodic orbit conjecture, Inst. Hautes Études Sci. Publ. Math., 46 (1976), 5-14. |
[23] |
E. Vogt, Foliations of codimension 2 with all leaves compact, Manuscripta Math., 18 (1976), 187-212.doi: 10.1007/BF01184305. |