Citation: |
[1] |
A. Avila, On the regularization of conservative maps, Acta Mathematica, 205 (2010), 5-18.doi: 10.1007/s11511-010-0050-y. |
[2] |
A. Avila and J. Bochi, Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms, Transactions AMS, 364 (2012), 2883-2907.doi: 10.1090/S0002-9947-2012-05423-7. |
[3] |
A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents, Ergod. Th. & Dynam. Sys., 23 (2003), 1655-1670. |
[4] |
J. Bochi, Genericity of zero Lyapunov exponents, Erg. Th. & Dyn. Sys., 22 (2002), 1667-1696. |
[5] |
J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic maps, Ann. Math., 161 (2005), 1423-1485.doi: 10.4007/annals.2005.161.1423. |
[6] |
C. Bonatti, C. Matheus, M. Viana and A. Wilkinson, Abundance of stable ergodicity, Comment. Math. Helv., 79 (2004), 753-757.doi: 10.1007/s00014-004-0819-8. |
[7] |
D. Gabai and W. Kazez, Group negative curvature for 3-manifolds with genuine laminations, Geom. Topol., 2 (1998), 65-77 (electronic).doi: 10.2140/gt.1998.2.65. |
[8] |
E. Grin, "Genericity of Diffeomorphisms with Zero Lyapunov Exponents Almost Everywhere," Msc. Thesis, Montevideo, 2010. |
[9] |
A. Haefliger, Variétés feuilletées, (French), Ann. Scuola Norm. Sup. Pisa (3), 16 (1962), 367-397. |
[10] |
G. Hector and U. Hirsch, "Introduction to the Geometry of Foliations. Part B. Foliations of Codimension One," Second edition, Aspects of Mathematics, E3, Friedr. Vieweg & Sohn, Braunschweig, 1987. |
[11] |
M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds," Lect. Notes Math., 583, Springer-Verlag, Berlin-New York, 1977. |
[12] |
J.-L. Journé, A regularity lemma for functions of several variables, Rev. Mat. Iberoamericana, 4 (1988), 187-193. |
[13] |
R. Mañé, An ergodic closing lemma, Ann. of Math. (2), 116 (1982), 503-540. |
[14] |
R. Mañé, Oseledec's theorem from the generic viewpoint, in "Proc. Internat. Congress of Mathematicians" (Warsaw, 1983), Vol. 1, 2, PWN, Warsaw, (1984), 1269-1276. |
[15] |
V. Oseledec, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197-221. |
[16] |
J. Oxtoby and S. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2), 42 (1941), 874-920.doi: 10.2307/1968772. |
[17] |
Y. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Russian Math. Surveys, 32 (1977), 55-112, 287.doi: 10.1070/RM1977v032n04ABEH001639. |
[18] |
F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math., 172 (2008), 353-381.doi: 10.1007/s00222-007-0100-z. |
[19] |
F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, Partial hyperbolicity and ergodicity in dimension three, Journal of Modern Dynamics, 2 (2008), 187-208.doi: 10.3934/jmd.2008.2.187. |
[20] |
F. Rodriguez Hertz, M. Rodriguez Hertz, A. Tahzibi and R. Ures, New criteria for ergodicity and nonuniform hyperbolicity, Duke Math. Journal, 160 (2011), 599-629.doi: 10.1215/00127094-1444314. |
[21] |
P. Zhang, Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems, Disc. Cont. Dyn. Sys., 32 (2012), 1435-1447.doi: 10.3934/dcds.2012.32.1435. |