January  2012, 6(1): 121-138. doi: 10.3934/jmd.2012.6.121

Genericity of nonuniform hyperbolicity in dimension 3

1. 

IMERL-Facultad de Ingeniería, Universidad de la República, CC 30 Montevideo, Uruguay

Received  March 2012 Published  May 2012

For a generic conservative diffeomorphism of a closed connected 3-manifold $M$, the Oseledets splitting is a globally dominated splitting. Moreover, either all Lyapunov exponents vanish almost everywhere, or else the system is nonuniformly hyperbolic and ergodic.
    This is the 3-dimensional version of the well-known result by Mañé-Bochi [14, 4], stating that a generic conservative surface diffeomorphism is either Anosov or all Lyapunov exponents vanish almost everywhere. This result was inspired by and answers in the positive in dimension 3 a conjecture by Avila-Bochi [2].
Citation: Jana Rodriguez Hertz. Genericity of nonuniform hyperbolicity in dimension 3. Journal of Modern Dynamics, 2012, 6 (1) : 121-138. doi: 10.3934/jmd.2012.6.121
References:
[1]

A. Avila, On the regularization of conservative maps,, Acta Mathematica, 205 (2010), 5.  doi: 10.1007/s11511-010-0050-y.  Google Scholar

[2]

A. Avila and J. Bochi, Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms,, Transactions AMS, 364 (2012), 2883.  doi: 10.1090/S0002-9947-2012-05423-7.  Google Scholar

[3]

A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents,, Ergod. Th. & Dynam. Sys., 23 (2003), 1655.   Google Scholar

[4]

J. Bochi, Genericity of zero Lyapunov exponents,, Erg. Th. & Dyn. Sys., 22 (2002), 1667.   Google Scholar

[5]

J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic maps,, Ann. Math., 161 (2005), 1423.  doi: 10.4007/annals.2005.161.1423.  Google Scholar

[6]

C. Bonatti, C. Matheus, M. Viana and A. Wilkinson, Abundance of stable ergodicity,, Comment. Math. Helv., 79 (2004), 753.  doi: 10.1007/s00014-004-0819-8.  Google Scholar

[7]

D. Gabai and W. Kazez, Group negative curvature for 3-manifolds with genuine laminations,, Geom. Topol., 2 (1998), 65.  doi: 10.2140/gt.1998.2.65.  Google Scholar

[8]

E. Grin, "Genericity of Diffeomorphisms with Zero Lyapunov Exponents Almost Everywhere,", Msc. Thesis, (2010).   Google Scholar

[9]

A. Haefliger, Variétés feuilletées,, (French), 16 (1962), 367.   Google Scholar

[10]

G. Hector and U. Hirsch, "Introduction to the Geometry of Foliations. Part B. Foliations of Codimension One,", Second edition, E3 (1987).   Google Scholar

[11]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,", Lect. Notes Math., 583 (1977).   Google Scholar

[12]

J.-L. Journé, A regularity lemma for functions of several variables,, Rev. Mat. Iberoamericana, 4 (1988), 187.   Google Scholar

[13]

R. Mañé, An ergodic closing lemma,, Ann. of Math. (2), 116 (1982), 503.   Google Scholar

[14]

R. Mañé, Oseledec's theorem from the generic viewpoint,, in, (1984), 1269.   Google Scholar

[15]

V. Oseledec, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems,, Trans. Moscow Math. Soc., 19 (1968), 197.   Google Scholar

[16]

J. Oxtoby and S. Ulam, Measure-preserving homeomorphisms and metrical transitivity,, Ann. of Math. (2), 42 (1941), 874.  doi: 10.2307/1968772.  Google Scholar

[17]

Y. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory,, Russian Math. Surveys, 32 (1977), 55.  doi: 10.1070/RM1977v032n04ABEH001639.  Google Scholar

[18]

F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle,, Invent. Math., 172 (2008), 353.  doi: 10.1007/s00222-007-0100-z.  Google Scholar

[19]

F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, Partial hyperbolicity and ergodicity in dimension three,, Journal of Modern Dynamics, 2 (2008), 187.  doi: 10.3934/jmd.2008.2.187.  Google Scholar

[20]

F. Rodriguez Hertz, M. Rodriguez Hertz, A. Tahzibi and R. Ures, New criteria for ergodicity and nonuniform hyperbolicity,, Duke Math. Journal, 160 (2011), 599.  doi: 10.1215/00127094-1444314.  Google Scholar

[21]

P. Zhang, Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems,, Disc. Cont. Dyn. Sys., 32 (2012), 1435.  doi: 10.3934/dcds.2012.32.1435.  Google Scholar

show all references

References:
[1]

A. Avila, On the regularization of conservative maps,, Acta Mathematica, 205 (2010), 5.  doi: 10.1007/s11511-010-0050-y.  Google Scholar

[2]

A. Avila and J. Bochi, Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms,, Transactions AMS, 364 (2012), 2883.  doi: 10.1090/S0002-9947-2012-05423-7.  Google Scholar

[3]

A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents,, Ergod. Th. & Dynam. Sys., 23 (2003), 1655.   Google Scholar

[4]

J. Bochi, Genericity of zero Lyapunov exponents,, Erg. Th. & Dyn. Sys., 22 (2002), 1667.   Google Scholar

[5]

J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic maps,, Ann. Math., 161 (2005), 1423.  doi: 10.4007/annals.2005.161.1423.  Google Scholar

[6]

C. Bonatti, C. Matheus, M. Viana and A. Wilkinson, Abundance of stable ergodicity,, Comment. Math. Helv., 79 (2004), 753.  doi: 10.1007/s00014-004-0819-8.  Google Scholar

[7]

D. Gabai and W. Kazez, Group negative curvature for 3-manifolds with genuine laminations,, Geom. Topol., 2 (1998), 65.  doi: 10.2140/gt.1998.2.65.  Google Scholar

[8]

E. Grin, "Genericity of Diffeomorphisms with Zero Lyapunov Exponents Almost Everywhere,", Msc. Thesis, (2010).   Google Scholar

[9]

A. Haefliger, Variétés feuilletées,, (French), 16 (1962), 367.   Google Scholar

[10]

G. Hector and U. Hirsch, "Introduction to the Geometry of Foliations. Part B. Foliations of Codimension One,", Second edition, E3 (1987).   Google Scholar

[11]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,", Lect. Notes Math., 583 (1977).   Google Scholar

[12]

J.-L. Journé, A regularity lemma for functions of several variables,, Rev. Mat. Iberoamericana, 4 (1988), 187.   Google Scholar

[13]

R. Mañé, An ergodic closing lemma,, Ann. of Math. (2), 116 (1982), 503.   Google Scholar

[14]

R. Mañé, Oseledec's theorem from the generic viewpoint,, in, (1984), 1269.   Google Scholar

[15]

V. Oseledec, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems,, Trans. Moscow Math. Soc., 19 (1968), 197.   Google Scholar

[16]

J. Oxtoby and S. Ulam, Measure-preserving homeomorphisms and metrical transitivity,, Ann. of Math. (2), 42 (1941), 874.  doi: 10.2307/1968772.  Google Scholar

[17]

Y. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory,, Russian Math. Surveys, 32 (1977), 55.  doi: 10.1070/RM1977v032n04ABEH001639.  Google Scholar

[18]

F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle,, Invent. Math., 172 (2008), 353.  doi: 10.1007/s00222-007-0100-z.  Google Scholar

[19]

F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, Partial hyperbolicity and ergodicity in dimension three,, Journal of Modern Dynamics, 2 (2008), 187.  doi: 10.3934/jmd.2008.2.187.  Google Scholar

[20]

F. Rodriguez Hertz, M. Rodriguez Hertz, A. Tahzibi and R. Ures, New criteria for ergodicity and nonuniform hyperbolicity,, Duke Math. Journal, 160 (2011), 599.  doi: 10.1215/00127094-1444314.  Google Scholar

[21]

P. Zhang, Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems,, Disc. Cont. Dyn. Sys., 32 (2012), 1435.  doi: 10.3934/dcds.2012.32.1435.  Google Scholar

[1]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[2]

V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511

[3]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[4]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[5]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[6]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[7]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[8]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[9]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[10]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[11]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[12]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[13]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[14]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[15]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[16]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[17]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[18]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[19]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]