July  2012, 6(3): 287-326. doi: 10.3934/jmd.2012.6.287

No planar billiard possesses an open set of quadrilateral trajectories

1. 

CNRS, Unité de Mathématiques Pures et Appliquées, M.R., École Normale Supérieure de Lyon, 46 allée d’Italie, 69364, Lyon 07, France

2. 

National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, Moscow 101000, Russian Federation

Received  January 2011 Revised  May 2012 Published  October 2012

The article is devoted to a particular case of Ivriĭ's conjecture on periodic orbits of billiards. The general conjecture states that the set of periodic orbits of the billiard in a domain with smooth boundary in the Euclidean space has measure zero. In this article we prove that for any domain with piecewise $C^4$-smooth boundary in the plane the set of quadrilateral trajectories of the corresponding billiard has measure zero.
Citation: Alexey Glutsyuk, Yury Kudryashov. No planar billiard possesses an open set of quadrilateral trajectories. Journal of Modern Dynamics, 2012, 6 (3) : 287-326. doi: 10.3934/jmd.2012.6.287
References:
[1]

A. Aleksenko and A. Plakhov, Bodies of zero resistance and bodies invisible in one direction,, Nonlinearity, 22 (2009), 1247.  doi: 10.1088/0951-7715/22/6/001.  Google Scholar

[2]

V. I. Avakumovi ć, Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten,, Math. Z., 65 (1956), 327.  doi: 10.1007/BF01473886.  Google Scholar

[3]

V. Babich and B. Levitan, The focussing problem and the asymptotics of the spectral function of the Laplace-Beltrami operator,, Dokl. Akad. Nauk SSSR, 230 (1976), 1017.   Google Scholar

[4]

Y. Baryshnikov and V. Zharnitsky, Billiards and nonholonomic distributions,, J. Math. Sciences, 128 (2005), 2706.  doi: 10.1007/s10958-005-0220-1.  Google Scholar

[5]

É. Cartan, "Les Systèmes Différentiels Extérieurs et Leur Applications Géométriques,", Actualités Sci. Ind., (1945).   Google Scholar

[6]

R. Courant, Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik,, Math. Z., 7 (1920), 1.  doi: 10.1007/BF01199396.  Google Scholar

[7]

J. J. Duistermaat and V. W. Guilleman, The spectrum of positive elliptic operators and periodic bi-characteristics,, Invent. Math., 2 (1975), 39.  doi: 10.1007/BF01405172.  Google Scholar

[8]

N. Filonov and Y. Safarov, Asymptotic estimates for the difference between the Dirichlet and Neumann counting functions,, (Russian) Funktsional. Anal. i Prilozhen., 44 (2010), 54.   Google Scholar

[9]

L. Hörmander, Fourier integral operators. I,, Acta Math., 127 (1971), 79.  doi: 10.1007/BF02392052.  Google Scholar

[10]

L. Hörmander, The spectral function of an elliptic operator,, Acta Math., 121 (1968), 193.   Google Scholar

[11]

V. Y. Ivriĭ, The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary,, Func. Anal. Appl., 14 (1980), 98.  doi: 10.1007/BF01086550.  Google Scholar

[12]

V. Y. Ivriĭ, Everything started from Weyl,, presentation slides, ().   Google Scholar

[13]

M. Kuranishi, On E. Cartan's prolongation theorem of exterior differential systems,, American Journal of Mathematics, 79 (1957), 1.  doi: 10.2307/2372692.  Google Scholar

[14]

V. Petkov and L. Stojanov, On the number of periodic reflecting rays in generic domains,, Erg. Theor. & Dyn. Sys., 8 (1988), 81.  doi: 10.1017/S0143385700004338.  Google Scholar

[15]

A. Plakhov and V. Roshchina, Invisibility in billiards,, Nonlinearity, 24 (2011), 847.  doi: 10.1088/0951-7715/24/3/007.  Google Scholar

[16]

P. K. Raševskiĭ, "Geometrical Theory of Partial Differential Equations,", OGIZ, (1947).   Google Scholar

[17]

M. R. Rychlik, Periodic points of the billiard ball map in a convex domain,, J. Diff. Geom., 30 (1989), 191.   Google Scholar

[18]

Yu. Safarov, Precise spectral asymptotics and inverse problems,, in, 235 (1991), 239.   Google Scholar

[19]

R. Seeley, A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain in $\mathbb R^3$,, Adv. Math., 29 (1978), 244.  doi: 10.1016/0001-8708(78)90013-0.  Google Scholar

[20]

L. Stojanov, Note on the periodic points of the billiard,, J. Differential Geom., 34 (1991), 835.   Google Scholar

[21]

D. Vasil'ev, Two-term asymptotics of the spectrum of a boundary value problem in interior reflection of general form,, (Russian) Funktsional. Anal. i Prilozhen., 18 (1984), 1.   Google Scholar

[22]

D. Vasil'ev, Two-term asymptotics of the spectrum of a boundary value problem in the case of a piecewise smooth boundary,, (Russian) Dokl. Akad. Nauk SSSR, 286 (1986), 1043.   Google Scholar

[23]

Ya. B. Vorobets, On the measure of the set of periodic points of a billiard,, Math. Notes, 55 (1994), 455.  doi: 10.1007/BF02110371.  Google Scholar

[24]

Hermann Weyl, "Über die asymptotische Verteilung der Eigenwerte,", Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, (1911), 110.   Google Scholar

[25]

M. P. Wojtkowski, Two applications of Jacobi fields to the billiard ball problem,, J. Differential Geom., 40 (1994), 155.   Google Scholar

show all references

References:
[1]

A. Aleksenko and A. Plakhov, Bodies of zero resistance and bodies invisible in one direction,, Nonlinearity, 22 (2009), 1247.  doi: 10.1088/0951-7715/22/6/001.  Google Scholar

[2]

V. I. Avakumovi ć, Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten,, Math. Z., 65 (1956), 327.  doi: 10.1007/BF01473886.  Google Scholar

[3]

V. Babich and B. Levitan, The focussing problem and the asymptotics of the spectral function of the Laplace-Beltrami operator,, Dokl. Akad. Nauk SSSR, 230 (1976), 1017.   Google Scholar

[4]

Y. Baryshnikov and V. Zharnitsky, Billiards and nonholonomic distributions,, J. Math. Sciences, 128 (2005), 2706.  doi: 10.1007/s10958-005-0220-1.  Google Scholar

[5]

É. Cartan, "Les Systèmes Différentiels Extérieurs et Leur Applications Géométriques,", Actualités Sci. Ind., (1945).   Google Scholar

[6]

R. Courant, Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik,, Math. Z., 7 (1920), 1.  doi: 10.1007/BF01199396.  Google Scholar

[7]

J. J. Duistermaat and V. W. Guilleman, The spectrum of positive elliptic operators and periodic bi-characteristics,, Invent. Math., 2 (1975), 39.  doi: 10.1007/BF01405172.  Google Scholar

[8]

N. Filonov and Y. Safarov, Asymptotic estimates for the difference between the Dirichlet and Neumann counting functions,, (Russian) Funktsional. Anal. i Prilozhen., 44 (2010), 54.   Google Scholar

[9]

L. Hörmander, Fourier integral operators. I,, Acta Math., 127 (1971), 79.  doi: 10.1007/BF02392052.  Google Scholar

[10]

L. Hörmander, The spectral function of an elliptic operator,, Acta Math., 121 (1968), 193.   Google Scholar

[11]

V. Y. Ivriĭ, The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary,, Func. Anal. Appl., 14 (1980), 98.  doi: 10.1007/BF01086550.  Google Scholar

[12]

V. Y. Ivriĭ, Everything started from Weyl,, presentation slides, ().   Google Scholar

[13]

M. Kuranishi, On E. Cartan's prolongation theorem of exterior differential systems,, American Journal of Mathematics, 79 (1957), 1.  doi: 10.2307/2372692.  Google Scholar

[14]

V. Petkov and L. Stojanov, On the number of periodic reflecting rays in generic domains,, Erg. Theor. & Dyn. Sys., 8 (1988), 81.  doi: 10.1017/S0143385700004338.  Google Scholar

[15]

A. Plakhov and V. Roshchina, Invisibility in billiards,, Nonlinearity, 24 (2011), 847.  doi: 10.1088/0951-7715/24/3/007.  Google Scholar

[16]

P. K. Raševskiĭ, "Geometrical Theory of Partial Differential Equations,", OGIZ, (1947).   Google Scholar

[17]

M. R. Rychlik, Periodic points of the billiard ball map in a convex domain,, J. Diff. Geom., 30 (1989), 191.   Google Scholar

[18]

Yu. Safarov, Precise spectral asymptotics and inverse problems,, in, 235 (1991), 239.   Google Scholar

[19]

R. Seeley, A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain in $\mathbb R^3$,, Adv. Math., 29 (1978), 244.  doi: 10.1016/0001-8708(78)90013-0.  Google Scholar

[20]

L. Stojanov, Note on the periodic points of the billiard,, J. Differential Geom., 34 (1991), 835.   Google Scholar

[21]

D. Vasil'ev, Two-term asymptotics of the spectrum of a boundary value problem in interior reflection of general form,, (Russian) Funktsional. Anal. i Prilozhen., 18 (1984), 1.   Google Scholar

[22]

D. Vasil'ev, Two-term asymptotics of the spectrum of a boundary value problem in the case of a piecewise smooth boundary,, (Russian) Dokl. Akad. Nauk SSSR, 286 (1986), 1043.   Google Scholar

[23]

Ya. B. Vorobets, On the measure of the set of periodic points of a billiard,, Math. Notes, 55 (1994), 455.  doi: 10.1007/BF02110371.  Google Scholar

[24]

Hermann Weyl, "Über die asymptotische Verteilung der Eigenwerte,", Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, (1911), 110.   Google Scholar

[25]

M. P. Wojtkowski, Two applications of Jacobi fields to the billiard ball problem,, J. Differential Geom., 40 (1994), 155.   Google Scholar

[1]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[2]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[3]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[4]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[5]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[6]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[7]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[8]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[9]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[10]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[11]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[12]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[13]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[14]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[15]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[16]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]