July  2012, 6(3): 327-375. doi: 10.3934/jmd.2012.6.327

The Julia set of a post-critically finite endomorphism of $\mathbb{PC}^2$

1. 

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, United States

Received  April 2011 Published  October 2012

We construct a combinatorial model of the Julia set of the endomorphism $f(z, w)=((1-2z/w)^2, (1-2/w)^2)$ of $\mathbb{PC}^2$.
Citation: Volodymyr Nekrashevych. The Julia set of a post-critically finite endomorphism of $\mathbb{PC}^2$. Journal of Modern Dynamics, 2012, 6 (3) : 327-375. doi: 10.3934/jmd.2012.6.327
References:
[1]

Laurent Bartholdi and Volodymyr V. Nekrashevych, Thurston equivalence of topological polynomials,, Acta Math., 197 (2006), 1.  doi: 10.1007/s11511-006-0007-3.  Google Scholar

[2]

Joan S. Birman, "Braids, Links, and Mapping Class Groups,", Annals of Mathematics Studies, 82 (1974).   Google Scholar

[3]

Adrien Douady and John H. Hubbard, "Étude Dynamiques des Polynômes Complexes. (Première Partie),", Publications Mathematiques d'Orsay, 2 (1984).   Google Scholar

[4]

Adrien Douady and John H. Hubbard, "Étude Dynamiques des Polynômes Complexes. (Deuxième Partie),", Publications Mathematiques d'Orsay, 4 (1985).   Google Scholar

[5]

Adrien Douady and John H. Hubbard, A proof of Thurston's topological characterization of rational functions,, Acta Math., 171 (1993), 263.  doi: 10.1007/BF02392534.  Google Scholar

[6]

J. E. Fornæss and N. Sibony, Critically finite rational maps on $\mathbbP^2$,, in, 137 (1992), 245.   Google Scholar

[7]

Yutaka Ishii and John Smillie, Homotopy shadowing,, Amer. J. Math., 132 (2010), 987.  doi: 10.1353/ajm.0.0126.  Google Scholar

[8]

S. Koch, "Teichmüller Theory and Endomorphisms of $\mathbbP^n$,", Ph.D. thesis, (2007).   Google Scholar

[9]

John Milnor, Pasting together Julia sets: A worked out example of mating,, Experiment. Math., 13 (2004), 55.  doi: 10586458.2004.10504523.  Google Scholar

[10]

Volodymyr Nekrashevych, "Self-Similar Groups,", Mathematical Surveys and Monographs, 117 (2005).   Google Scholar

[11]

Volodymyr Nekrashevych, A minimal Cantor set in the space of 3-generated groups,, Geometriae Dedicata, 124 (2007), 153.  doi: 10.1007/s10711-006-9118-4.  Google Scholar

[12]

Volodymyr Nekrashevych, Combinatorial models of expanding dynamical systems,, preprint, (2008).   Google Scholar

[13]

Volodymyr Nekrashevych, Symbolic dynamics and self-similar groups,, in, 53 (2008), 25.   Google Scholar

[14]

Volodymyr Nekrashevych., Combinatorics of polynomial iterations., In D. Schleicher, (2009), 169.   Google Scholar

[15]

Volodymyr Nekrashevych, A group of non-uniform exponential growth locally isomorphic to $IMG$$(z^2+i)$,, Transactions of the AMS, 362 (2010), 389.   Google Scholar

[16]

Alfredo Poirier, The classification of postcritically finite polynomials II: Hubbard trees,, Stony Brook IMS preprint, (1993).   Google Scholar

[17]

John S. Wilson, On exponential growth and uniform exponential growth for groups,, Inventiones Mathematicae, 155 (2004), 287.  doi: 10.1007/s00222-003-0321-8.  Google Scholar

show all references

References:
[1]

Laurent Bartholdi and Volodymyr V. Nekrashevych, Thurston equivalence of topological polynomials,, Acta Math., 197 (2006), 1.  doi: 10.1007/s11511-006-0007-3.  Google Scholar

[2]

Joan S. Birman, "Braids, Links, and Mapping Class Groups,", Annals of Mathematics Studies, 82 (1974).   Google Scholar

[3]

Adrien Douady and John H. Hubbard, "Étude Dynamiques des Polynômes Complexes. (Première Partie),", Publications Mathematiques d'Orsay, 2 (1984).   Google Scholar

[4]

Adrien Douady and John H. Hubbard, "Étude Dynamiques des Polynômes Complexes. (Deuxième Partie),", Publications Mathematiques d'Orsay, 4 (1985).   Google Scholar

[5]

Adrien Douady and John H. Hubbard, A proof of Thurston's topological characterization of rational functions,, Acta Math., 171 (1993), 263.  doi: 10.1007/BF02392534.  Google Scholar

[6]

J. E. Fornæss and N. Sibony, Critically finite rational maps on $\mathbbP^2$,, in, 137 (1992), 245.   Google Scholar

[7]

Yutaka Ishii and John Smillie, Homotopy shadowing,, Amer. J. Math., 132 (2010), 987.  doi: 10.1353/ajm.0.0126.  Google Scholar

[8]

S. Koch, "Teichmüller Theory and Endomorphisms of $\mathbbP^n$,", Ph.D. thesis, (2007).   Google Scholar

[9]

John Milnor, Pasting together Julia sets: A worked out example of mating,, Experiment. Math., 13 (2004), 55.  doi: 10586458.2004.10504523.  Google Scholar

[10]

Volodymyr Nekrashevych, "Self-Similar Groups,", Mathematical Surveys and Monographs, 117 (2005).   Google Scholar

[11]

Volodymyr Nekrashevych, A minimal Cantor set in the space of 3-generated groups,, Geometriae Dedicata, 124 (2007), 153.  doi: 10.1007/s10711-006-9118-4.  Google Scholar

[12]

Volodymyr Nekrashevych, Combinatorial models of expanding dynamical systems,, preprint, (2008).   Google Scholar

[13]

Volodymyr Nekrashevych, Symbolic dynamics and self-similar groups,, in, 53 (2008), 25.   Google Scholar

[14]

Volodymyr Nekrashevych., Combinatorics of polynomial iterations., In D. Schleicher, (2009), 169.   Google Scholar

[15]

Volodymyr Nekrashevych, A group of non-uniform exponential growth locally isomorphic to $IMG$$(z^2+i)$,, Transactions of the AMS, 362 (2010), 389.   Google Scholar

[16]

Alfredo Poirier, The classification of postcritically finite polynomials II: Hubbard trees,, Stony Brook IMS preprint, (1993).   Google Scholar

[17]

John S. Wilson, On exponential growth and uniform exponential growth for groups,, Inventiones Mathematicae, 155 (2004), 287.  doi: 10.1007/s00222-003-0321-8.  Google Scholar

[1]

André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351

[2]

Rodolfo Gutiérrez-Romo. A family of quaternionic monodromy groups of the Kontsevich–Zorich cocycle. Journal of Modern Dynamics, 2019, 14: 227-242. doi: 10.3934/jmd.2019008

[3]

Luke G. Rogers, Alexander Teplyaev. Laplacians on the basilica Julia set. Communications on Pure & Applied Analysis, 2010, 9 (1) : 211-231. doi: 10.3934/cpaa.2010.9.211

[4]

Anna Erschler. Iterated identities and iterational depth of groups. Journal of Modern Dynamics, 2015, 9: 257-284. doi: 10.3934/jmd.2015.9.257

[5]

Thierry Coulbois. Fractal trees for irreducible automorphisms of free groups. Journal of Modern Dynamics, 2010, 4 (2) : 359-391. doi: 10.3934/jmd.2010.4.359

[6]

Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751

[7]

Tatiane C. Batista, Juliano S. Gonschorowski, Fábio A. Tal. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3315-3326. doi: 10.3934/dcds.2015.35.3315

[8]

Koh Katagata. On a certain kind of polynomials of degree 4 with disconnected Julia set. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 975-987. doi: 10.3934/dcds.2008.20.975

[9]

Rich Stankewitz. Density of repelling fixed points in the Julia set of a rational or entire semigroup, II. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2583-2589. doi: 10.3934/dcds.2012.32.2583

[10]

Eldho K. Thomas, Nadya Markin, Frédérique Oggier. On Abelian group representability of finite groups. Advances in Mathematics of Communications, 2014, 8 (2) : 139-152. doi: 10.3934/amc.2014.8.139

[11]

Jinghong Liu, Yinsuo Jia. Gradient superconvergence post-processing of the tensor-product quadratic pentahedral finite element. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 495-504. doi: 10.3934/dcdsb.2015.20.495

[12]

Yu-Hao Liang, Wan-Rou Wu, Jonq Juang. Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 173-184. doi: 10.3934/dcdsb.2016.21.173

[13]

Naoki Chigira, Nobuo Iiyori and Hiroyoshi Yamaki. Nonabelian Sylow subgroups of finite groups of even order. Electronic Research Announcements, 1998, 4: 88-90.

[14]

L. Yu. Glebsky and E. I. Gordon. On approximation of locally compact groups by finite algebraic systems. Electronic Research Announcements, 2004, 10: 21-28.

[15]

Henk Broer, Konstantinos Efstathiou, Olga Lukina. A geometric fractional monodromy theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 517-532. doi: 10.3934/dcdss.2010.3.517

[16]

L. Bakker. Semiconjugacy of quasiperiodic flows and finite index subgroups of multiplier groups. Conference Publications, 2005, 2005 (Special) : 60-69. doi: 10.3934/proc.2005.2005.60

[17]

Alexander Moreto. Complex group algebras of finite groups: Brauer's Problem 1. Electronic Research Announcements, 2005, 11: 34-39.

[18]

Brandon Seward. Krieger's finite generator theorem for actions of countable groups Ⅱ. Journal of Modern Dynamics, 2019, 15: 1-39. doi: 10.3934/jmd.2019012

[19]

Rod Cross, Hugh McNamara, Leonid Kalachev, Alexei Pokrovskii. Hysteresis and post Walrasian economics. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 377-401. doi: 10.3934/dcdsb.2013.18.377

[20]

N. Romero, A. Rovella, F. Vilamajó. Dynamics of vertical delay endomorphisms. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 409-422. doi: 10.3934/dcdsb.2003.3.409

2018 Impact Factor: 0.295

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]