\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The Julia set of a post-critically finite endomorphism of $\mathbb{PC}^2$

Abstract Related Papers Cited by
  • We construct a combinatorial model of the Julia set of the endomorphism $f(z, w)=((1-2z/w)^2, (1-2/w)^2)$ of $\mathbb{PC}^2$.
    Mathematics Subject Classification: Primary: 37F20, 37D20; Secondary: 20F65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Laurent Bartholdi and Volodymyr V. Nekrashevych, Thurston equivalence of topological polynomials, Acta Math., 197 (2006), 1-51.doi: 10.1007/s11511-006-0007-3.

    [2]

    Joan S. Birman, "Braids, Links, and Mapping Class Groups," Annals of Mathematics Studies, 82, Princeton University Press, Princeton, N.J., 1974.

    [3]

    Adrien Douady and John H. Hubbard, "Étude Dynamiques des Polynômes Complexes. (Première Partie)," Publications Mathematiques d'Orsay, 2, Université de Paris-Sud, 1984.

    [4]

    Adrien Douady and John H. Hubbard, "Étude Dynamiques des Polynômes Complexes. (Deuxième Partie)," Publications Mathematiques d'Orsay, 4, Université de Paris-Sud, 1985.

    [5]

    Adrien Douady and John H. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math., 171 (1993), 263-297.doi: 10.1007/BF02392534.

    [6]

    J. E. Fornæss and N. Sibony, Critically finite rational maps on $\mathbbP^2$, in "The Madison Symposium on Complex Analysis" (Madison, WI, 1991), Contemp. Math., 137, Amer. Math. Soc., Providence, RI, (1992), 245-260.

    [7]

    Yutaka Ishii and John Smillie, Homotopy shadowing, Amer. J. Math., 132 (2010), 987-1029.doi: 10.1353/ajm.0.0126.

    [8]

    S. Koch, "Teichmüller Theory and Endomorphisms of $\mathbbP^n$," Ph.D. thesis, Université de Provence, 2007.

    [9]

    John Milnor, Pasting together Julia sets: A worked out example of mating, Experiment. Math., 13 (2004), 55-92.doi: 10586458.2004.10504523.

    [10]

    Volodymyr Nekrashevych, "Self-Similar Groups," Mathematical Surveys and Monographs, 117, Amer. Math. Soc., Providence, RI, 2005.

    [11]

    Volodymyr Nekrashevych, A minimal Cantor set in the space of 3-generated groups, Geometriae Dedicata, 124 (2007), 153-190.doi: 10.1007/s10711-006-9118-4.

    [12]

    Volodymyr Nekrashevych, Combinatorial models of expanding dynamical systems, preprint, arXiv:0810.4936, 2008.

    [13]

    Volodymyr Nekrashevych, Symbolic dynamics and self-similar groups, in "Holomorphic Dynamics and Renormalization" (eds. Mikhail Lyubich and Michael Yampolsky), Fields Institute Communications, 53, Amer. Math. Soc., Providence, RI, (2008), 25-73.

    [14]

    Volodymyr Nekrashevych., Combinatorics of polynomial iterations. In D. Schleicher, editor, Complex Dynamics - Families and Friends, pages 169-214. A K Peters, 2009.

    [15]

    Volodymyr Nekrashevych, A group of non-uniform exponential growth locally isomorphic to $IMG$$(z^2+i)$, Transactions of the AMS, 362 (2010), 389-398.

    [16]

    Alfredo Poirier, The classification of postcritically finite polynomials II: Hubbard trees, Stony Brook IMS preprint, 1993.

    [17]

    John S. Wilson, On exponential growth and uniform exponential growth for groups, Inventiones Mathematicae, 155 (2004), 287-303.doi: 10.1007/s00222-003-0321-8.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(127) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return