\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Compact asymptotically harmonic manifolds

Abstract Related Papers Cited by
  • A complete Riemannian manifold without conjugate points is said to be asymptotically harmonic if the mean curvature of its horospheres is a universal constant. Examples of asymptotically harmonic manifolds include flat spaces and rank-one locally symmetric spaces of noncompact type. In this paper we show that this list exhausts the compact asymptotically harmonic manifolds under a variety of assumptions including nonpositive curvature or Gromov-hyperbolic fundamental group. We then present a new characterization of symmetric spaces amongst the set of all visibility manifolds.
    Mathematics Subject Classification: Primary: 53C24, 53C35; Secondary: 37D40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Michael T. Anderson and Richard Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math. (2), 121 (1985), 429-461.

    [2]

    Robert Azencott and Edward N. Wilson, Homogeneous manifolds with negative curvature. II, Mem. Amer. Math. Soc., 8 (1976), iii+102.

    [3]

    Werner Ballmann, Nonpositively curved manifolds of higher rank, Ann. of Math. (2), 122 (1985), 597-609.

    [4]

    Werner Ballmann, Misha Brin and Patrick Eberlein, Structure of manifolds of nonpositive curvature. I, Ann. of Math. (2), 122 (1985), 171-203.

    [5]

    G. Besson, G. Courtois and S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. Funct. Anal., 5 (1995), 731-799.doi: 10.1007/BF01897050.

    [6]

    Yves Benoist, Patrick Foulon and François Labourie, Flots d'Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc., 5 (1992), 33-74.doi: 10.2307/2152750.

    [7]

    J. Bolton, Conditions under which a geodesic flow is Anosov, Math. Ann., 240 (1979), 103-113.doi: 10.1007/BF01364627.

    [8]

    Keith Burns and Ralf Spatzier, Manifolds of nonpositive curvature and their buildings, Inst. Hautes Études Sci. Publ. Math., 65 (1987), 35-59.

    [9]

    Michel Coornaert, Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math., 159 (1993), 241-270.

    [10]

    Ewa Damek and Fulvio Ricci, A class of nonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 139-142.

    [11]

    Patrick Eberlein, Geodesic flow in certain manifolds without conjugate points, Trans. Amer. Math. Soc., 167 (1972), 151-170.doi: 10.1090/S0002-9947-1972-0295387-4.

    [12]

    Patrick Eberlein, When is a geodesic flow of Anosov type? I, J. Differential Geometry, 8 (1973), 437-463.

    [13]

    P. Eberlein and B. O'Neill, Visibility manifolds, Pacific J. Math., 46 (1973), 45-109.

    [14]

    Jost-Hinrich Eschenburg, Horospheres and the stable part of the geodesic flow, Math. Z., 153 (1977), 237-251.doi: 10.1007/BF01214477.

    [15]

    J.-H. Eschenburg, A note on symmetric and harmonic spaces, J. London Math. Soc. (2), 21 (1980), 541-543.

    [16]

    Patrick Foulon and François Labourie, Sur les variétés compactes asymptotiquement harmoniques, Invent. Math., 109 (1992), 97-111.doi: 10.1007/BF01232020.

    [17]

    A. Freire and R. Mañé, On the entropy of the geodesic flow in manifolds without conjugate points, Invent. Math., 69 (1982), 375-392.doi: 10.1007/BF01389360.

    [18]

    Lucy Garnett, Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal., 51 (1983), 285-311.doi: 10.1016/0022-1236(83)90015-0.

    [19]

    L. W. Green, A theorem of E. Hopf, Michigan Math. J., 5 (1958), 31-34.doi: 10.1307/mmj/1028998009.

    [20]

    Alexander Grigor'yan, "Heat Kernel and Analysis on Manifolds," AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2009.

    [21]

    M. Gromov, Hyperbolic groups, in "Essays in Group Theory," Math. Sci. Res. Inst. Publ., 8, Springer, New York, (1987), 75-263.

    [22]

    J. Heber, On harmonic and asymptotically harmonic homogeneous spaces, Geom. Funct. Anal., 16 (2006), 869-890.doi: 10.1007/s00039-006-0569-4.

    [23]

    Jens Heber, Gerhard Knieper and Hemangi M. Shah, Asymptotically harmonic spaces in dimension 3, Proc. Amer. Math. Soc., 135 (2007), 845-849.

    [24]

    Anatole Katok and Boris Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems," With a supplementary chapter by Katok and Leonardo Mendoza, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.

    [25]

    Gerhard Knieper, New results on noncompact harmonic manifolds, Comment. Math. Helv., 87 (2012), 669-703.doi: 10.4171/CMH/265.

    [26]

    A. J. Ledger, Symmetric harmonic spaces, J. London Math. Soc., 32 (1957), 53-56.doi: 10.1112/jlms/s1-32.1.53.

    [27]

    F. Ledrappier, Harmonic measures and Bowen-Margulis measures, Israel J. Math., 71 (1990), 275-287.doi: 10.1007/BF02773746.

    [28]

    François Ledrappier, Linear drift and entropy for regular covers, Geom. Funct. Anal., 20 (2010), 710-725.doi: 10.1007/s00039-010-0080-9.

    [29]

    André Lichnerowicz, Sur les espaces riemanniens complètement harmoniques, Bull. Soc. Math. France, 72 (1944), 146-168.

    [30]

    François Ledrappier and Lin Shu, Entropy rigidity of symmetric spaces without focal points, preprint, 2012.

    [31]

    François Ledrappier and Xiaodong Wang, An integral formula for the volume entropy with applications to rigidity, J. Differential Geom., 85 (2010), 461-477.

    [32]

    Anthony Manning, Topological entropy for geodesic flows, Ann. of Math. (2), 110 (1979), 567-573.

    [33]

    Akhil Ranjan and Hemangi Shah, Busemann functions in a harmonic manifold, Geom. Dedicata, 101 (2003), 167-183.doi: 10.1023/A:1026369930269.

    [34]

    Rafael O. Ruggiero, "Dynamics and Global Geometry of Manifolds Without Conjugate Points," Ensaios Matemáticos [Mathematical Surveys], 12, Sociedade Brasileira de Matemática, Rio de Janeiro, 2007.

    [35]

    Hemangi Shah, On 3-dimensional asymptotically harmonic manifolds with minimal horospheres, preprint, 2011.

    [36]

    Viktor Schroeder and Hemangi Shah, On 3-dimensional asymptotically harmonic manifolds, Arch. Math. (Basel), 90 (2008), 275-278.doi: 10.1007/s00013-008-2611-2.

    [37]

    Z. I. Szabó, The Lichnerowicz conjecture on harmonic manifolds, J. Differential Geom., 31 (1990), 1-28.

    [38]

    Jordan Watkins, The higher rank rigidity theorem for manifolds with no focal points, preprint, 2011.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(111) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return