January  2012, 6(1): 41-58. doi: 10.3934/jmd.2012.6.41

On primes and period growth for Hamiltonian diffeomorphisms

1. 

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Received  November 2011 Published  May 2012

Here we use Vinogradov's prime distribution theorem and a multidimensional generalization due to Harman to strengthen some recent results from [12] and [13] concerning the periodic points of Hamiltonian diffeomorphisms. In particular we establish resonance relations for the mean indices of the fixed points of Hamiltonian diffeomorphisms which do not have periodic points with arbitrarily large periods in $\mathbb{P}^2$, the set of natural numbers greater than one which have at most two prime factors when counted with multiplicity. As an application of these results we extend the methods of [2] to partially recover, using only symplectic tools, a theorem on the periodic points of Hamiltonian diffeomorphisms of the sphere by Franks and Handel from [10].
Citation: Ely Kerman. On primes and period growth for Hamiltonian diffeomorphisms. Journal of Modern Dynamics, 2012, 6 (1) : 41-58. doi: 10.3934/jmd.2012.6.41
References:
[1]

V. I. Arnol'd, "Mathematical Methods of Classical Mechanics,", Second edition, 60 (1989).   Google Scholar

[2]

B. Collier, E. Kerman, B. Reiniger, B. Turmunkh and A. Zimmer, A symplectic proof of a theorem of Franks,, preprint, ().   Google Scholar

[3]

C. Conley and E. Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations,, Comm. Pure Appl. Math., 37 (1984), 207.  doi: 10.1002/cpa.3160370204.  Google Scholar

[4]

A. Cotton-Clay, Symplectic Floer homology of area-preserving surface diffeomorphisms,, Geom. Topol., 13 (2009), 2619.  doi: 10.2140/gt.2009.13.2619.  Google Scholar

[5]

A. Cotton-Clay, A sharp bound on fixed points of area-preserving surface diffeomorphisms,, preprint, ().   Google Scholar

[6]

S. Dostoglou and D. A. Salamon, Self-dual instantons and holomorphic curves,, Ann. of Math. (2), 139 (1994), 581.   Google Scholar

[7]

A. Floer, Morse theory for Lagrangian intersections,, J. Diff. Geom., 28 (1988), 513.   Google Scholar

[8]

J. Franks, Geodesics on $S^2$ and periodic points of annulus homeomorphisms,, Invent. Math., 108 (1992), 403.  doi: 10.1007/BF02100612.  Google Scholar

[9]

J. Franks, Area preserving homeomorphisms of open surfaces of genus zero,, New York Jour. of Math., 2 (1996), 1.   Google Scholar

[10]

J. Franks and M. Handel, Periodic points of Hamiltonian surface diffeomorphisms,, Geom. Topol., 7 (2003), 713.  doi: 10.2140/gt.2003.7.713.  Google Scholar

[11]

V. L. Ginzburg, The Conley conjecture,, Ann. of Math. (2), 172 (2010), 1127.  doi: 10.4007/annals.2010.172.1129.  Google Scholar

[12]

V. L. Ginzburg and B. Z. Gürel, Action and index spectra and periodic orbits in Hamiltonian dynamics,, Geom. Topol., 13 (2009), 2745.  doi: 10.2140/gt.2009.13.2745.  Google Scholar

[13]

V. L. Ginzburg and E. Kerman, Homological resonances for Hamiltonian diffeomorphisms and Reeb flows,, Internat. Math. Res. Notices, 2010 (): 53.  doi: 10.1093/imrn/rnp120.  Google Scholar

[14]

G. Harman, Simultaneous Diophantine approximation with primes,, J. London Math. Soc. (2), 39 (1989), 405.  doi: 10.1112/jlms/s2-39.3.405.  Google Scholar

[15]

N. Hingston, Subharmonic solutions of Hamiltonian equations on tori,, Ann. of Math. (2), 170 (2009), 529.  doi: 10.4007/annals.2009.170.529.  Google Scholar

[16]

H. V. Lê and K. Ono, Symplectic fixed points, the Calabi invariant and Novikov homology,, Topology, 34 (1995), 155.  doi: 10.1016/0040-9383(94)E0015-C.  Google Scholar

[17]

Y. Long, "Index Theory for Symplectic Paths with Applications,", Progr. Math., 207 (2002).   Google Scholar

[18]

D. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index,, Comm. Pure Appl. Math., 45 (1992), 1303.  doi: 10.1002/cpa.3160451004.  Google Scholar

[19]

P. Seidel, "Floer Homology and the Symplectic Isotopy Problem,", D. Phil thesis, (1997).   Google Scholar

[20]

P. Seidel, $\pi_1$ of symplectic automorphism groups and invertibles in quantum homology rings,, Geom. Funct. Anal., 7 (1997), 1046.  doi: 10.1007/s000390050037.  Google Scholar

[21]

P. Seidel, Symplectic Floer homology and the mapping class group,, Pac. J. Math., 206 (2002), 219.  doi: 10.2140/pjm.2002.206.219.  Google Scholar

[22]

P. Seidel, Braids and symplectic four-manifolds with abelian fundamental group,, Turkish J. Math., 26 (2002), 93.   Google Scholar

[23]

I. M. Vinogradov, "The Method of Trigonometric Sums in the Theory of Numbers,", Translated from the Russian, (1954).   Google Scholar

show all references

References:
[1]

V. I. Arnol'd, "Mathematical Methods of Classical Mechanics,", Second edition, 60 (1989).   Google Scholar

[2]

B. Collier, E. Kerman, B. Reiniger, B. Turmunkh and A. Zimmer, A symplectic proof of a theorem of Franks,, preprint, ().   Google Scholar

[3]

C. Conley and E. Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations,, Comm. Pure Appl. Math., 37 (1984), 207.  doi: 10.1002/cpa.3160370204.  Google Scholar

[4]

A. Cotton-Clay, Symplectic Floer homology of area-preserving surface diffeomorphisms,, Geom. Topol., 13 (2009), 2619.  doi: 10.2140/gt.2009.13.2619.  Google Scholar

[5]

A. Cotton-Clay, A sharp bound on fixed points of area-preserving surface diffeomorphisms,, preprint, ().   Google Scholar

[6]

S. Dostoglou and D. A. Salamon, Self-dual instantons and holomorphic curves,, Ann. of Math. (2), 139 (1994), 581.   Google Scholar

[7]

A. Floer, Morse theory for Lagrangian intersections,, J. Diff. Geom., 28 (1988), 513.   Google Scholar

[8]

J. Franks, Geodesics on $S^2$ and periodic points of annulus homeomorphisms,, Invent. Math., 108 (1992), 403.  doi: 10.1007/BF02100612.  Google Scholar

[9]

J. Franks, Area preserving homeomorphisms of open surfaces of genus zero,, New York Jour. of Math., 2 (1996), 1.   Google Scholar

[10]

J. Franks and M. Handel, Periodic points of Hamiltonian surface diffeomorphisms,, Geom. Topol., 7 (2003), 713.  doi: 10.2140/gt.2003.7.713.  Google Scholar

[11]

V. L. Ginzburg, The Conley conjecture,, Ann. of Math. (2), 172 (2010), 1127.  doi: 10.4007/annals.2010.172.1129.  Google Scholar

[12]

V. L. Ginzburg and B. Z. Gürel, Action and index spectra and periodic orbits in Hamiltonian dynamics,, Geom. Topol., 13 (2009), 2745.  doi: 10.2140/gt.2009.13.2745.  Google Scholar

[13]

V. L. Ginzburg and E. Kerman, Homological resonances for Hamiltonian diffeomorphisms and Reeb flows,, Internat. Math. Res. Notices, 2010 (): 53.  doi: 10.1093/imrn/rnp120.  Google Scholar

[14]

G. Harman, Simultaneous Diophantine approximation with primes,, J. London Math. Soc. (2), 39 (1989), 405.  doi: 10.1112/jlms/s2-39.3.405.  Google Scholar

[15]

N. Hingston, Subharmonic solutions of Hamiltonian equations on tori,, Ann. of Math. (2), 170 (2009), 529.  doi: 10.4007/annals.2009.170.529.  Google Scholar

[16]

H. V. Lê and K. Ono, Symplectic fixed points, the Calabi invariant and Novikov homology,, Topology, 34 (1995), 155.  doi: 10.1016/0040-9383(94)E0015-C.  Google Scholar

[17]

Y. Long, "Index Theory for Symplectic Paths with Applications,", Progr. Math., 207 (2002).   Google Scholar

[18]

D. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index,, Comm. Pure Appl. Math., 45 (1992), 1303.  doi: 10.1002/cpa.3160451004.  Google Scholar

[19]

P. Seidel, "Floer Homology and the Symplectic Isotopy Problem,", D. Phil thesis, (1997).   Google Scholar

[20]

P. Seidel, $\pi_1$ of symplectic automorphism groups and invertibles in quantum homology rings,, Geom. Funct. Anal., 7 (1997), 1046.  doi: 10.1007/s000390050037.  Google Scholar

[21]

P. Seidel, Symplectic Floer homology and the mapping class group,, Pac. J. Math., 206 (2002), 219.  doi: 10.2140/pjm.2002.206.219.  Google Scholar

[22]

P. Seidel, Braids and symplectic four-manifolds with abelian fundamental group,, Turkish J. Math., 26 (2002), 93.   Google Scholar

[23]

I. M. Vinogradov, "The Method of Trigonometric Sums in the Theory of Numbers,", Translated from the Russian, (1954).   Google Scholar

[1]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[2]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[3]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[4]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[5]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[6]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[7]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[8]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[9]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[10]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[11]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[12]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[13]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[14]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[15]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[16]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]