-
Previous Article
An algebraic characterization of expanding Thurston maps
- JMD Home
- This Issue
- Next Article
Weak mixing suspension flows over shifts of finite type are universal
1. | Department of Mathematics and Statistics, University of Victoria, P.O. Box 3060 STN CSC, Victoria, B.C., V8W 3R4 |
2. | Department of Mathematics and Statistics, University of Victoria, PO BOX 3060 STN CSC, Victoria, BC V8W 3R4, Canada |
References:
[1] |
S. Alpern, Generic properties of measure preserving homeomorphisms, In "Ergodic Theory" (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978), Lecture Notes in Math., 729, Springer, Berlin, (1979), 16-27. |
[2] |
A. Bellow and H. Furstenberg, An application of number theory to ergodic theory and the construction of uniquely ergodic models. A collection of invited papers on ergodic theory, Israel J. Math., 33 (1979), 231-240 (1980).
doi: 10.1007/BF02762163. |
[3] |
R. Bowen, The equidistribution of closed geodesics, Amer. J. Math., 94 (1972), 413-423. |
[4] |
R. Bowen, One-dimensional hyperbolic sets for flows, J. Differential Equations, 12 (1972), 173-179. |
[5] |
R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math., 95 (1973), 429-460. |
[6] |
R. Bowen and B. Marcus, Unique ergodicity for horocycle foliations, Israel J. Math., 26 (1977), 43-67. |
[7] |
R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202. |
[8] |
R. Bowen and P. Walters, Expansive one-parameter flows, J. Differential Equations, 12 (1972), 180-193. |
[9] |
M. Denker, C. Grillenberger and K. Sigmund, "Ergodic Theory on Compact Spaces," Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. |
[10] |
S. J. Eigen and V. S. Prasad, Multiple Rokhlin tower theorem: A simple proof, New York J. Math., 3A (1997/98), Proceedings of the New York Journal of Mathematics Conference, June 9-13, (1997), 11-14 (electronic). |
[11] |
N. A. Friedman, "Introduction to Ergodic Theory," Van Nostrand Reinhold Mathematical Studies, No. 29, Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1970. |
[12] |
T. N. T. Goodman, Relating topological entropy and measure entropy, Bull. London Math. Soc., 3 (1971), 176-180. |
[13] |
R. I. Jewett, The prevalence of uniquely ergodic systems,, J. Math. Mech., 19 (): 717.
|
[14] |
M. Keane and M. Smorodinsky, A class of finitary codes, Israel J. Math., 26 (1977), 352-371. |
[15] |
M. Keane and M. Smorodinsky, Bernoulli schemes of the same entropy are finitarily isomorphic, Ann. of Math. (2), 109 (1979), 397-406.
doi: 10.2307/1971117. |
[16] |
H. B. Keynes and J. B. Robertson, Eigenvalue theorems in topological transformation groups, Trans. Amer. Math. Soc., 139 (1969), 359-369. |
[17] |
W. Krieger, On entropy and generators of measure-preserving transformations, Trans. Amer. Math. Soc., 149 (1970), 453-464. |
[18] |
W. Krieger, On entropy and generators of measure-preserving transformations, Trans. Amer. Math. Soc., 149 (1970), 453-464. |
[19] |
W. Krieger, Erratum to: "On entropy and generators of measure-preserving transformations," Trans. Amer. Math. Soc., 168 (1972), 519. |
[20] |
W. Krieger, On unique ergodicity, in "Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability" (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory, Univ. California Press, Berkeley, Calif., (1972), 327-346. |
[21] |
W. Krieger, On generators in ergodic theory, in "Proceedings of the International Congress of Mathematicians" (Vancouver, B. C., 1974), Vol. 2, Canad. Math. Congress, Montreal, Que., (1975), 303-308. |
[22] |
, F. Ledrappier, F. Rodriguez Hertz and J. Rodriguez Hertz,, personal communication., ().
|
[23] |
D. Lind, Ergodic group automorphisms and specification, in "Ergodic Theory" (eds. M. Denker and K. Jacobs) (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978), Lecture Notes in Mathematics, 729, Springer, Berlin, (1979), 93-104.
doi: 10.1007/BFb0063287. |
[24] |
D. Lind, Dynamical properties of quasihyperbolic toral automorphisms, Ergodic Theory Dynam. Systems, 2 (1982), 49-68. |
[25] |
D. Lind and B. Marcus, "An Introduction to Symbolic Dynamics and Coding," Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511626302. |
[26] |
D. A. Lind, Perturbations of shifts of finite type, SIAM J. Discrete Math., 2 (1989), 350-365.
doi: 10.1137/0402031. |
[27] |
D. A. Lind and J.-P. Thouvenot, Measure-preserving homeomorphisms of the torus represent all finite entropy ergodic transformations,, Math. Systems Theory, 11 (): 275.
|
[28] |
D. S. Ornstein, A $K$ automorphism with no square root and Pinsker's conjecture, Advances in Math., 10 (1973), 89-102. |
[29] |
W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187-188 (1990), 268 pp. |
[30] |
A. Quas and T. Soo, Ergodic universality of some topological dynamical systems, arXiv:1208.3501, 2012. |
[31] |
M. Ratner, Markov partitions for Anosov flows on $n$-dimensional manifolds, Israel J. Math., 15 (1973), 92-114. |
[32] |
J. Serafin, Finitary codes, a short survey, in "Dynamics & Stochastics," IMS Lecture Notes Monogr. Ser., 48, Inst. Math. Statist., Beachwood, OH, (2006), 262-273.
doi: 10.1214/lnms/1196285827. |
[33] | |
[34] |
H. Totoki, On a class of special flows, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 15 (1970), 157-167. |
show all references
References:
[1] |
S. Alpern, Generic properties of measure preserving homeomorphisms, In "Ergodic Theory" (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978), Lecture Notes in Math., 729, Springer, Berlin, (1979), 16-27. |
[2] |
A. Bellow and H. Furstenberg, An application of number theory to ergodic theory and the construction of uniquely ergodic models. A collection of invited papers on ergodic theory, Israel J. Math., 33 (1979), 231-240 (1980).
doi: 10.1007/BF02762163. |
[3] |
R. Bowen, The equidistribution of closed geodesics, Amer. J. Math., 94 (1972), 413-423. |
[4] |
R. Bowen, One-dimensional hyperbolic sets for flows, J. Differential Equations, 12 (1972), 173-179. |
[5] |
R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math., 95 (1973), 429-460. |
[6] |
R. Bowen and B. Marcus, Unique ergodicity for horocycle foliations, Israel J. Math., 26 (1977), 43-67. |
[7] |
R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202. |
[8] |
R. Bowen and P. Walters, Expansive one-parameter flows, J. Differential Equations, 12 (1972), 180-193. |
[9] |
M. Denker, C. Grillenberger and K. Sigmund, "Ergodic Theory on Compact Spaces," Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. |
[10] |
S. J. Eigen and V. S. Prasad, Multiple Rokhlin tower theorem: A simple proof, New York J. Math., 3A (1997/98), Proceedings of the New York Journal of Mathematics Conference, June 9-13, (1997), 11-14 (electronic). |
[11] |
N. A. Friedman, "Introduction to Ergodic Theory," Van Nostrand Reinhold Mathematical Studies, No. 29, Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1970. |
[12] |
T. N. T. Goodman, Relating topological entropy and measure entropy, Bull. London Math. Soc., 3 (1971), 176-180. |
[13] |
R. I. Jewett, The prevalence of uniquely ergodic systems,, J. Math. Mech., 19 (): 717.
|
[14] |
M. Keane and M. Smorodinsky, A class of finitary codes, Israel J. Math., 26 (1977), 352-371. |
[15] |
M. Keane and M. Smorodinsky, Bernoulli schemes of the same entropy are finitarily isomorphic, Ann. of Math. (2), 109 (1979), 397-406.
doi: 10.2307/1971117. |
[16] |
H. B. Keynes and J. B. Robertson, Eigenvalue theorems in topological transformation groups, Trans. Amer. Math. Soc., 139 (1969), 359-369. |
[17] |
W. Krieger, On entropy and generators of measure-preserving transformations, Trans. Amer. Math. Soc., 149 (1970), 453-464. |
[18] |
W. Krieger, On entropy and generators of measure-preserving transformations, Trans. Amer. Math. Soc., 149 (1970), 453-464. |
[19] |
W. Krieger, Erratum to: "On entropy and generators of measure-preserving transformations," Trans. Amer. Math. Soc., 168 (1972), 519. |
[20] |
W. Krieger, On unique ergodicity, in "Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability" (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory, Univ. California Press, Berkeley, Calif., (1972), 327-346. |
[21] |
W. Krieger, On generators in ergodic theory, in "Proceedings of the International Congress of Mathematicians" (Vancouver, B. C., 1974), Vol. 2, Canad. Math. Congress, Montreal, Que., (1975), 303-308. |
[22] |
, F. Ledrappier, F. Rodriguez Hertz and J. Rodriguez Hertz,, personal communication., ().
|
[23] |
D. Lind, Ergodic group automorphisms and specification, in "Ergodic Theory" (eds. M. Denker and K. Jacobs) (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978), Lecture Notes in Mathematics, 729, Springer, Berlin, (1979), 93-104.
doi: 10.1007/BFb0063287. |
[24] |
D. Lind, Dynamical properties of quasihyperbolic toral automorphisms, Ergodic Theory Dynam. Systems, 2 (1982), 49-68. |
[25] |
D. Lind and B. Marcus, "An Introduction to Symbolic Dynamics and Coding," Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511626302. |
[26] |
D. A. Lind, Perturbations of shifts of finite type, SIAM J. Discrete Math., 2 (1989), 350-365.
doi: 10.1137/0402031. |
[27] |
D. A. Lind and J.-P. Thouvenot, Measure-preserving homeomorphisms of the torus represent all finite entropy ergodic transformations,, Math. Systems Theory, 11 (): 275.
|
[28] |
D. S. Ornstein, A $K$ automorphism with no square root and Pinsker's conjecture, Advances in Math., 10 (1973), 89-102. |
[29] |
W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187-188 (1990), 268 pp. |
[30] |
A. Quas and T. Soo, Ergodic universality of some topological dynamical systems, arXiv:1208.3501, 2012. |
[31] |
M. Ratner, Markov partitions for Anosov flows on $n$-dimensional manifolds, Israel J. Math., 15 (1973), 92-114. |
[32] |
J. Serafin, Finitary codes, a short survey, in "Dynamics & Stochastics," IMS Lecture Notes Monogr. Ser., 48, Inst. Math. Statist., Beachwood, OH, (2006), 262-273.
doi: 10.1214/lnms/1196285827. |
[33] | |
[34] |
H. Totoki, On a class of special flows, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 15 (1970), 157-167. |
[1] |
Jonatan Lenells. Weak geodesic flow and global solutions of the Hunter-Saxton equation. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 643-656. doi: 10.3934/dcds.2007.18.643 |
[2] |
Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365 |
[3] |
Zhenqi Jenny Wang. The twisted cohomological equation over the geodesic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3923-3940. doi: 10.3934/dcds.2019158 |
[4] |
Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581 |
[5] |
César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577 |
[6] |
Anke D. Pohl. Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2173-2241. doi: 10.3934/dcds.2014.34.2173 |
[7] |
Vladimir S. Matveev and Petar J. Topalov. Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. Electronic Research Announcements, 2000, 6: 98-104. |
[8] |
Bendong Lou. Spiral rotating waves of a geodesic curvature flow on the unit sphere. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 933-942. doi: 10.3934/dcdsb.2012.17.933 |
[9] |
Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148 |
[10] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390 |
[11] |
Dubi Kelmer, Hee Oh. Shrinking targets for the geodesic flow on geometrically finite hyperbolic manifolds. Journal of Modern Dynamics, 2021, 17: 401-434. doi: 10.3934/jmd.2021014 |
[12] |
Gabriela P. Ovando. The geodesic flow on nilpotent Lie groups of steps two and three. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 327-352. doi: 10.3934/dcds.2021119 |
[13] |
Vincenzo Ambrosio, Giovanni Molica Bisci, Dušan Repovš. Nonlinear equations involving the square root of the Laplacian. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 151-170. doi: 10.3934/dcdss.2019011 |
[14] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[15] |
R.L. Sheu, M.J. Ting, I.L. Wang. Maximum flow problem in the distribution network. Journal of Industrial and Management Optimization, 2006, 2 (3) : 237-254. doi: 10.3934/jimo.2006.2.237 |
[16] |
Daniel J. Thompson. A criterion for topological entropy to decrease under normalised Ricci flow. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1243-1248. doi: 10.3934/dcds.2011.30.1243 |
[17] |
Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547 |
[18] |
Laurence Guillot, Maïtine Bergounioux. Existence and uniqueness results for the gradient vector flow and geodesic active contours mixed model. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1333-1349. doi: 10.3934/cpaa.2009.8.1333 |
[19] |
Partha Sharathi Dutta, Soumitro Banerjee. Period increment cascades in a discontinuous map with square-root singularity. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 961-976. doi: 10.3934/dcdsb.2010.14.961 |
[20] |
Theresa Lange, Wilhelm Stannat. Mean field limit of Ensemble Square Root filters - discrete and continuous time. Foundations of Data Science, 2021, 3 (3) : 563-588. doi: 10.3934/fods.2021003 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]