\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An algebraic characterization of expanding Thurston maps

Abstract Related Papers Cited by
  • Let $f\colon S^2 \to S^2$ be a postcritically finite branched covering map without periodic branch points. We give necessary and sufficient algebraic conditions for $f$ to be homotopic, relative to its postcritical set, to an expanding map $g$.
    Mathematics Subject Classification: Primary: 37F20; Secondary: 37D20, 20E08, 20F65, 54E40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Laurent Bartholdi, Functionally recursive groups, GAP package, 2011. Available from: http://www.uni-math.gwdg.de/laurent/FR/.

    [2]

    Martin R. Bridson and André Haefliger, "Metric spaces of non-positive curvature," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, 1999.

    [3]

    Mario Bonk and Daniel Meyer, Expanding Thurston maps, arXiv:1009.3647, 2010.

    [4]

    James W. Cannon, William J. Floyd and Walter R. Parry, Finite subdivision rules, Conform. Geom. Dyn., 5 (2001), 153-196 (electronic).doi: 10.1090/S1088-4173-01-00055-8.

    [5]

    James W. Cannon, William J. Floyd, Walter R. Parry and Kevin Pilgrim, Subdivision rules and virtual endomorphisms, Geom. Dedicata, 141 (2009), 181-195.doi: 10.1007/s10711-009-9352-7.

    [6]

    Robert J. Daverman, "Decompositions of Manifolds," Pure and Applied Mathematics, 124, Academic Press, Inc., Orlando, FL, 1986.

    [7]

    Adrien Douady and John Hubbard, A proof of Thurston's topological characterization of rational functions, Acta. Math., 171 (1993), 263-297.doi: 10.1007/BF02392534.

    [8]

    Peter Haïssinsky and Kevin M. Pilgrim, Coarse expanding conformal dynamics, Astérisque, 325 (2009), viii+139 pp. (2010).

    [9]

    Peter Haïssinsky and Kevin M. Pilgrim, Finite type coarse expanding conformal dynamics, Groups Geom. Dyn., 5 (2011), 603-661.doi: 10.4171/GGD/141.

    [10]

    Volodymyr Nekrashevych, "Self-Similar Groups," Mathematical Surveys and Monographs, 117, American Mathematical Society, Providence, RI, 2005.

    [11]

    Volodymyr NekrashevychCombinatorial models of expanding dynamical systems, arXiv:0810.4936.

    [12]

    Kevin Pilgrim and Tan Lei, Rational maps with disconnected Julia set, Géométrie Complexe et Systèmes Dynamiques (Orsay, 1995), Astérisque, (2000), xiv, 349-384.

    [13]

    Kevin M. Pilgrim, Julia sets as Gromov boundaries following V. Nekrashevych, Spring Topology and Dynamical Systems Conference, Topology Proc., 29 (2005), 293-316.

    [14]

    Mary Rees, A partial description of parameter space of rational maps of degree two. I, Acta Math., 168 (1992), 11-87.doi: 10.1007/BF02392976.

    [15]

    Michael Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math., 91 (1969), 175-199.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(104) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return