October  2012, 6(4): 451-476. doi: 10.3934/jmd.2012.6.451

An algebraic characterization of expanding Thurston maps

1. 

Université Paul Sabatier, Institut de Mathématiques de Toulouse (IMT), 118 route de Narbonne, 31062 Toulouse Cedex 9, France

2. 

Dept. Mathematics, Indiana University, Bloomington, IN 47405

Received  May 2012 Published  January 2013

Let $f\colon S^2 \to S^2$ be a postcritically finite branched covering map without periodic branch points. We give necessary and sufficient algebraic conditions for $f$ to be homotopic, relative to its postcritical set, to an expanding map $g$.
Citation: Peter Haïssinsky, Kevin M. Pilgrim. An algebraic characterization of expanding Thurston maps. Journal of Modern Dynamics, 2012, 6 (4) : 451-476. doi: 10.3934/jmd.2012.6.451
References:
[1]

Laurent Bartholdi, Functionally recursive groups, GAP package, 2011. Available from: http://www.uni-math.gwdg.de/laurent/FR/.

[2]

Martin R. Bridson and André Haefliger, "Metric spaces of non-positive curvature," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, 1999.

[3]

Mario Bonk and Daniel Meyer, Expanding Thurston maps, arXiv:1009.3647, 2010.

[4]

James W. Cannon, William J. Floyd and Walter R. Parry, Finite subdivision rules, Conform. Geom. Dyn., 5 (2001), 153-196 (electronic). doi: 10.1090/S1088-4173-01-00055-8.

[5]

James W. Cannon, William J. Floyd, Walter R. Parry and Kevin Pilgrim, Subdivision rules and virtual endomorphisms, Geom. Dedicata, 141 (2009), 181-195. doi: 10.1007/s10711-009-9352-7.

[6]

Robert J. Daverman, "Decompositions of Manifolds," Pure and Applied Mathematics, 124, Academic Press, Inc., Orlando, FL, 1986.

[7]

Adrien Douady and John Hubbard, A proof of Thurston's topological characterization of rational functions, Acta. Math., 171 (1993), 263-297. doi: 10.1007/BF02392534.

[8]

Peter Haïssinsky and Kevin M. Pilgrim, Coarse expanding conformal dynamics, Astérisque, 325 (2009), viii+139 pp. (2010).

[9]

Peter Haïssinsky and Kevin M. Pilgrim, Finite type coarse expanding conformal dynamics, Groups Geom. Dyn., 5 (2011), 603-661. doi: 10.4171/GGD/141.

[10]

Volodymyr Nekrashevych, "Self-Similar Groups," Mathematical Surveys and Monographs, 117, American Mathematical Society, Providence, RI, 2005.

[11]

Volodymyr Nekrashevych, Combinatorial models of expanding dynamical systems,, \arXiv{0810.4936}., (). 

[12]

Kevin Pilgrim and Tan Lei, Rational maps with disconnected Julia set, Géométrie Complexe et Systèmes Dynamiques (Orsay, 1995), Astérisque, (2000), xiv, 349-384.

[13]

Kevin M. Pilgrim, Julia sets as Gromov boundaries following V. Nekrashevych, Spring Topology and Dynamical Systems Conference, Topology Proc., 29 (2005), 293-316.

[14]

Mary Rees, A partial description of parameter space of rational maps of degree two. I, Acta Math., 168 (1992), 11-87. doi: 10.1007/BF02392976.

[15]

Michael Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math., 91 (1969), 175-199.

show all references

References:
[1]

Laurent Bartholdi, Functionally recursive groups, GAP package, 2011. Available from: http://www.uni-math.gwdg.de/laurent/FR/.

[2]

Martin R. Bridson and André Haefliger, "Metric spaces of non-positive curvature," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, 1999.

[3]

Mario Bonk and Daniel Meyer, Expanding Thurston maps, arXiv:1009.3647, 2010.

[4]

James W. Cannon, William J. Floyd and Walter R. Parry, Finite subdivision rules, Conform. Geom. Dyn., 5 (2001), 153-196 (electronic). doi: 10.1090/S1088-4173-01-00055-8.

[5]

James W. Cannon, William J. Floyd, Walter R. Parry and Kevin Pilgrim, Subdivision rules and virtual endomorphisms, Geom. Dedicata, 141 (2009), 181-195. doi: 10.1007/s10711-009-9352-7.

[6]

Robert J. Daverman, "Decompositions of Manifolds," Pure and Applied Mathematics, 124, Academic Press, Inc., Orlando, FL, 1986.

[7]

Adrien Douady and John Hubbard, A proof of Thurston's topological characterization of rational functions, Acta. Math., 171 (1993), 263-297. doi: 10.1007/BF02392534.

[8]

Peter Haïssinsky and Kevin M. Pilgrim, Coarse expanding conformal dynamics, Astérisque, 325 (2009), viii+139 pp. (2010).

[9]

Peter Haïssinsky and Kevin M. Pilgrim, Finite type coarse expanding conformal dynamics, Groups Geom. Dyn., 5 (2011), 603-661. doi: 10.4171/GGD/141.

[10]

Volodymyr Nekrashevych, "Self-Similar Groups," Mathematical Surveys and Monographs, 117, American Mathematical Society, Providence, RI, 2005.

[11]

Volodymyr Nekrashevych, Combinatorial models of expanding dynamical systems,, \arXiv{0810.4936}., (). 

[12]

Kevin Pilgrim and Tan Lei, Rational maps with disconnected Julia set, Géométrie Complexe et Systèmes Dynamiques (Orsay, 1995), Astérisque, (2000), xiv, 349-384.

[13]

Kevin M. Pilgrim, Julia sets as Gromov boundaries following V. Nekrashevych, Spring Topology and Dynamical Systems Conference, Topology Proc., 29 (2005), 293-316.

[14]

Mary Rees, A partial description of parameter space of rational maps of degree two. I, Acta Math., 168 (1992), 11-87. doi: 10.1007/BF02392976.

[15]

Michael Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math., 91 (1969), 175-199.

[1]

Nikita Selinger. Topological characterization of canonical Thurston obstructions. Journal of Modern Dynamics, 2013, 7 (1) : 99-117. doi: 10.3934/jmd.2013.7.99

[2]

Volodymyr Nekrashevych. The Julia set of a post-critically finite endomorphism of $\mathbb{PC}^2$. Journal of Modern Dynamics, 2012, 6 (3) : 327-375. doi: 10.3934/jmd.2012.6.327

[3]

Pedro A. S. Salomão. The Thurston operator for semi-finite combinatorics. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 883-896. doi: 10.3934/dcds.2006.16.883

[4]

Mary Wilkerson. Thurston's algorithm and rational maps from quadratic polynomial matings. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2403-2433. doi: 10.3934/dcdss.2019151

[5]

Luca Consolini, Alessandro Costalunga, Manfredi Maggiore. A coordinate-free theory of virtual holonomic constraints. Journal of Geometric Mechanics, 2018, 10 (4) : 467-502. doi: 10.3934/jgm.2018018

[6]

Joshua Du, Liancheng Wang. Dispersion relations for supersonic multiple virtual jets. Conference Publications, 2011, 2011 (Special) : 381-390. doi: 10.3934/proc.2011.2011.381

[7]

Radu Saghin. Note on homology of expanding foliations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 349-360. doi: 10.3934/dcdss.2009.2.349

[8]

Carlangelo Liverani. A footnote on expanding maps. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3741-3751. doi: 10.3934/dcds.2013.33.3741

[9]

Rui Gao, Weixiao Shen. Analytic skew-products of quadratic polynomials over Misiurewicz-Thurston maps. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2013-2036. doi: 10.3934/dcds.2014.34.2013

[10]

Weimin Sheng, Caihong Yi. A class of anisotropic expanding curvature flows. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2017-2035. doi: 10.3934/dcds.2020104

[11]

Peter Haïssinsky, Kevin M. Pilgrim. Examples of coarse expanding conformal maps. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2403-2416. doi: 10.3934/dcds.2012.32.2403

[12]

Yushi Nakano, Shota Sakamoto. Spectra of expanding maps on Besov spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1779-1797. doi: 10.3934/dcds.2019077

[13]

José F. Alves. Stochastic behavior of asymptotically expanding maps. Conference Publications, 2001, 2001 (Special) : 14-21. doi: 10.3934/proc.2001.2001.14

[14]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1413-1429. doi: 10.3934/cpaa.2021026

[15]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[16]

Lluís Alsedà, Michał Misiurewicz. Semiconjugacy to a map of a constant slope. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3403-3413. doi: 10.3934/dcdsb.2015.20.3403

[17]

Richard Evan Schwartz. Outer billiards and the pinwheel map. Journal of Modern Dynamics, 2011, 5 (2) : 255-283. doi: 10.3934/jmd.2011.5.255

[18]

Valentin Ovsienko, Richard Schwartz, Serge Tabachnikov. Quasiperiodic motion for the pentagram map. Electronic Research Announcements, 2009, 16: 1-8. doi: 10.3934/era.2009.16.1

[19]

John Erik Fornæss, Brendan Weickert. A quantized henon map. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 723-740. doi: 10.3934/dcds.2000.6.723

[20]

Zenonas Navickas, Rasa Smidtaite, Alfonsas Vainoras, Minvydas Ragulskis. The logistic map of matrices. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 927-944. doi: 10.3934/dcdsb.2011.16.927

2020 Impact Factor: 0.848

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]