October  2012, 6(4): 451-476. doi: 10.3934/jmd.2012.6.451

An algebraic characterization of expanding Thurston maps

1. 

Université Paul Sabatier, Institut de Mathématiques de Toulouse (IMT), 118 route de Narbonne, 31062 Toulouse Cedex 9, France

2. 

Dept. Mathematics, Indiana University, Bloomington, IN 47405

Received  May 2012 Published  January 2013

Let $f\colon S^2 \to S^2$ be a postcritically finite branched covering map without periodic branch points. We give necessary and sufficient algebraic conditions for $f$ to be homotopic, relative to its postcritical set, to an expanding map $g$.
Citation: Peter Haïssinsky, Kevin M. Pilgrim. An algebraic characterization of expanding Thurston maps. Journal of Modern Dynamics, 2012, 6 (4) : 451-476. doi: 10.3934/jmd.2012.6.451
References:
[1]

Laurent Bartholdi, Functionally recursive groups, GAP package, 2011. Available from: http://www.uni-math.gwdg.de/laurent/FR/. Google Scholar

[2]

Martin R. Bridson and André Haefliger, "Metric spaces of non-positive curvature," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, 1999.  Google Scholar

[3]

Mario Bonk and Daniel Meyer, Expanding Thurston maps, arXiv:1009.3647, 2010. Google Scholar

[4]

James W. Cannon, William J. Floyd and Walter R. Parry, Finite subdivision rules, Conform. Geom. Dyn., 5 (2001), 153-196 (electronic). doi: 10.1090/S1088-4173-01-00055-8.  Google Scholar

[5]

James W. Cannon, William J. Floyd, Walter R. Parry and Kevin Pilgrim, Subdivision rules and virtual endomorphisms, Geom. Dedicata, 141 (2009), 181-195. doi: 10.1007/s10711-009-9352-7.  Google Scholar

[6]

Robert J. Daverman, "Decompositions of Manifolds," Pure and Applied Mathematics, 124, Academic Press, Inc., Orlando, FL, 1986.  Google Scholar

[7]

Adrien Douady and John Hubbard, A proof of Thurston's topological characterization of rational functions, Acta. Math., 171 (1993), 263-297. doi: 10.1007/BF02392534.  Google Scholar

[8]

Peter Haïssinsky and Kevin M. Pilgrim, Coarse expanding conformal dynamics, Astérisque, 325 (2009), viii+139 pp. (2010).  Google Scholar

[9]

Peter Haïssinsky and Kevin M. Pilgrim, Finite type coarse expanding conformal dynamics, Groups Geom. Dyn., 5 (2011), 603-661. doi: 10.4171/GGD/141.  Google Scholar

[10]

Volodymyr Nekrashevych, "Self-Similar Groups," Mathematical Surveys and Monographs, 117, American Mathematical Society, Providence, RI, 2005.  Google Scholar

[11]

Volodymyr Nekrashevych, Combinatorial models of expanding dynamical systems,, \arXiv{0810.4936}., ().   Google Scholar

[12]

Kevin Pilgrim and Tan Lei, Rational maps with disconnected Julia set, Géométrie Complexe et Systèmes Dynamiques (Orsay, 1995), Astérisque, (2000), xiv, 349-384.  Google Scholar

[13]

Kevin M. Pilgrim, Julia sets as Gromov boundaries following V. Nekrashevych, Spring Topology and Dynamical Systems Conference, Topology Proc., 29 (2005), 293-316.  Google Scholar

[14]

Mary Rees, A partial description of parameter space of rational maps of degree two. I, Acta Math., 168 (1992), 11-87. doi: 10.1007/BF02392976.  Google Scholar

[15]

Michael Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math., 91 (1969), 175-199.  Google Scholar

show all references

References:
[1]

Laurent Bartholdi, Functionally recursive groups, GAP package, 2011. Available from: http://www.uni-math.gwdg.de/laurent/FR/. Google Scholar

[2]

Martin R. Bridson and André Haefliger, "Metric spaces of non-positive curvature," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, 1999.  Google Scholar

[3]

Mario Bonk and Daniel Meyer, Expanding Thurston maps, arXiv:1009.3647, 2010. Google Scholar

[4]

James W. Cannon, William J. Floyd and Walter R. Parry, Finite subdivision rules, Conform. Geom. Dyn., 5 (2001), 153-196 (electronic). doi: 10.1090/S1088-4173-01-00055-8.  Google Scholar

[5]

James W. Cannon, William J. Floyd, Walter R. Parry and Kevin Pilgrim, Subdivision rules and virtual endomorphisms, Geom. Dedicata, 141 (2009), 181-195. doi: 10.1007/s10711-009-9352-7.  Google Scholar

[6]

Robert J. Daverman, "Decompositions of Manifolds," Pure and Applied Mathematics, 124, Academic Press, Inc., Orlando, FL, 1986.  Google Scholar

[7]

Adrien Douady and John Hubbard, A proof of Thurston's topological characterization of rational functions, Acta. Math., 171 (1993), 263-297. doi: 10.1007/BF02392534.  Google Scholar

[8]

Peter Haïssinsky and Kevin M. Pilgrim, Coarse expanding conformal dynamics, Astérisque, 325 (2009), viii+139 pp. (2010).  Google Scholar

[9]

Peter Haïssinsky and Kevin M. Pilgrim, Finite type coarse expanding conformal dynamics, Groups Geom. Dyn., 5 (2011), 603-661. doi: 10.4171/GGD/141.  Google Scholar

[10]

Volodymyr Nekrashevych, "Self-Similar Groups," Mathematical Surveys and Monographs, 117, American Mathematical Society, Providence, RI, 2005.  Google Scholar

[11]

Volodymyr Nekrashevych, Combinatorial models of expanding dynamical systems,, \arXiv{0810.4936}., ().   Google Scholar

[12]

Kevin Pilgrim and Tan Lei, Rational maps with disconnected Julia set, Géométrie Complexe et Systèmes Dynamiques (Orsay, 1995), Astérisque, (2000), xiv, 349-384.  Google Scholar

[13]

Kevin M. Pilgrim, Julia sets as Gromov boundaries following V. Nekrashevych, Spring Topology and Dynamical Systems Conference, Topology Proc., 29 (2005), 293-316.  Google Scholar

[14]

Mary Rees, A partial description of parameter space of rational maps of degree two. I, Acta Math., 168 (1992), 11-87. doi: 10.1007/BF02392976.  Google Scholar

[15]

Michael Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math., 91 (1969), 175-199.  Google Scholar

[1]

Nikita Selinger. Topological characterization of canonical Thurston obstructions. Journal of Modern Dynamics, 2013, 7 (1) : 99-117. doi: 10.3934/jmd.2013.7.99

[2]

Volodymyr Nekrashevych. The Julia set of a post-critically finite endomorphism of $\mathbb{PC}^2$. Journal of Modern Dynamics, 2012, 6 (3) : 327-375. doi: 10.3934/jmd.2012.6.327

[3]

Pedro A. S. Salomão. The Thurston operator for semi-finite combinatorics. Discrete & Continuous Dynamical Systems, 2006, 16 (4) : 883-896. doi: 10.3934/dcds.2006.16.883

[4]

Mary Wilkerson. Thurston's algorithm and rational maps from quadratic polynomial matings. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : 2403-2433. doi: 10.3934/dcdss.2019151

[5]

Luca Consolini, Alessandro Costalunga, Manfredi Maggiore. A coordinate-free theory of virtual holonomic constraints. Journal of Geometric Mechanics, 2018, 10 (4) : 467-502. doi: 10.3934/jgm.2018018

[6]

Joshua Du, Liancheng Wang. Dispersion relations for supersonic multiple virtual jets. Conference Publications, 2011, 2011 (Special) : 381-390. doi: 10.3934/proc.2011.2011.381

[7]

Radu Saghin. Note on homology of expanding foliations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 349-360. doi: 10.3934/dcdss.2009.2.349

[8]

Carlangelo Liverani. A footnote on expanding maps. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3741-3751. doi: 10.3934/dcds.2013.33.3741

[9]

Rui Gao, Weixiao Shen. Analytic skew-products of quadratic polynomials over Misiurewicz-Thurston maps. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 2013-2036. doi: 10.3934/dcds.2014.34.2013

[10]

Kemal Kilic, Menekse G. Saygi, Semih O. Sezer. Exact and heuristic methods for personalized display advertising in virtual reality platforms. Journal of Industrial & Management Optimization, 2019, 15 (2) : 833-854. doi: 10.3934/jimo.2018073

[11]

Yi Zhang, Xiao-Li Ma. Research on image digital watermarking optimization algorithm under virtual reality technology. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1427-1440. doi: 10.3934/dcdss.2019098

[12]

Božidar Jovanović, Vladimir Jovanović. Virtual billiards in pseudo–euclidean spaces: Discrete hamiltonian and contact integrability. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5163-5190. doi: 10.3934/dcds.2017224

[13]

Jafar Sadeghi, Mojtaba Ghiyasi, Akram Dehnokhalaji. Resource allocation and target setting based on virtual profit improvement. Numerical Algebra, Control & Optimization, 2020, 10 (2) : 127-142. doi: 10.3934/naco.2019043

[14]

Hongming Yang, Dexin Yi, Junhua Zhao, Fengji Luo, Zhaoyang Dong. Distributed optimal dispatch of virtual power plant based on ELM transformation. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1297-1318. doi: 10.3934/jimo.2014.10.1297

[15]

Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021, 13 (2) : 167-193. doi: 10.3934/jgm.2021002

[16]

Shuhao Cao. A simple virtual element-based flux recovery on quadtree. Electronic Research Archive, , () : -. doi: 10.3934/era.2021054

[17]

Qingguang Guan. Some estimates of virtual element methods for fourth order problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2021074

[18]

Weimin Sheng, Caihong Yi. A class of anisotropic expanding curvature flows. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2017-2035. doi: 10.3934/dcds.2020104

[19]

Peter Haïssinsky, Kevin M. Pilgrim. Examples of coarse expanding conformal maps. Discrete & Continuous Dynamical Systems, 2012, 32 (7) : 2403-2416. doi: 10.3934/dcds.2012.32.2403

[20]

Yushi Nakano, Shota Sakamoto. Spectra of expanding maps on Besov spaces. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 1779-1797. doi: 10.3934/dcds.2019077

2020 Impact Factor: 0.848

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]