Citation: |
[1] |
J. Aaronson, "An Introduction to Infinite Ergodic Theory," Mathematical Surveys and Monographs, 50, American Mathematical Society, Providence, RI, 1997. |
[2] |
M. Boshernitzan, A condition for weak mixing of induced IETs, in "Dynamical Systems and Group Actions," Contemp. Math., 567, Amer. Math. Soc., Providence, RI, (2012), 53-65.doi: 10.1090/conm/567/11251. |
[3] |
M. Boshernitzan, G. Galperin, T. Krüger and S. Troubetzkoy, Periodic billiard orbits are dense in rational polygons, Trans. Amer. Math. Soc., 350 (1998), 3523-3535.doi: 10.1090/S0002-9947-98-02089-3. |
[4] |
J. Chaika and P. Hubert, Ergodicity of skew products over interval exchange transformations, in preparation. |
[5] |
J.-P. Conze, Recurrence, ergodicity and invariant measures for cocycles over a rotation, in "Ergodic Theory," Contemporary Mathematics, 485, Amer. Math. Soc., Providence, RI, (2009), 45-70.doi: 10.1090/conm/485/09492. |
[6] |
J.-P. Conze and K. Frączek, Cocycles over interval exchange transformations and multivalued Hamiltonian flows, Adv. Math., 226 (2011), 4373-4428.doi: 10.1016/j.aim.2010.11.014. |
[7] |
J.-P. Conze and E. Gutkin, On recurrence and ergodicity for geodesic flows on non-compact periodic polygonal surfaces, Ergodic Theory Dynam. Systems, 32 (2012), 491-515.doi: 10.1017/S0143385711001003. |
[8] |
V. Delecroix, P. Hubert and S. Leliévre, Diffusion for the periodic wind-tree model, preprint. |
[9] |
K. Frączek and M. Lemańczyk, On disjointness properties of some smooth flows, Fund. Math., 185 (2005), 117-142.doi: 10.4064/fm185-2-2. |
[10] |
K. Frączek and C. Ulcigrai, Non-ergodic Z-periodic billiards and infinite translation surfaces, arXiv:1109.4584, (2011). |
[11] |
E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic, Duke Math. J., 103 (2000), 191-213.doi: 10.1215/S0012-7094-00-10321-3. |
[12] |
W. Hooper, P. Hubert and B. Weiss, Dynamics on the infinite staircase, Disc. Cont. Dyn. Sys., to appear. |
[13] |
W. Hooper and B. Weiss, Generalized staircases: Recurrence and symmetry, Annales de l'Institut Fourier, 62 (2012), 1581-1600. |
[14] |
P. Hubert and S. Lelièvre, Prime arithmetic Teichmüller discs in $\mathcalH(2)$, Isr. J. Math., 151 (2006), 281-321.doi: 10.1007/BF02777365. |
[15] |
P. Hubert, S. Lelièvre and S. Troubetzkoy, The Ehrenfest wind-tree model: Periodic directions, recurrence, diffusion, Journal fuer die Reine und Angewandte Mathematik (Crelle's Journal), 656 (2011), 223-244.doi: 10.1515/CRELLE.2011.052. |
[16] |
P. Hubert and T. A. Schmidt, An introduction to Veech surfaces, in "Handbook of dynamical systems," Vol. 1B, Elsevier B. V., Amsterdam, (2006), 501-526.doi: 10.1016/S1874-575X(06)80031-7. |
[17] |
P. Hubert and B. Weiss, Ergodicity for infinite periodic translation surfaces, preprint. |
[18] |
S. Kerckhoff, H. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials, The Annals of Mathematics (2), 124 (1986), 293-311.doi: 10.2307/1971280. |
[19] |
M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.doi: 10.1007/s00222-003-0303-x. |
[20] |
E. Lanneau and D.-M. Nguyen, Teichmüller curves generatedby Weierstrass Prym eigenforms in genus three and genus four, preprint. |
[21] |
H. Masur, Ergodic theory of translation surfaces, in "Handbook of Dynamical Systems," Vol. 1B, Elsevier B. V., Amsterdam, (2006), 527-547.doi: 10.1016/S1874-575X(06)80032-9. |
[22] |
H. Masur and S. Tabachnikov, Rational billiards and flat structures, in "Handbook of Dynamical Systems," Vol. 1A, North-Holland, Amsterdam, (2002), 1015-1089.doi: 10.1016/S1874-575X(02)80015-7. |
[23] |
C. T. McMullen, Teichmüller curves in genus two: Discriminant and spin, Mathematische Annalen, 333 (2005), 87-130.doi: 10.1007/s00208-005-0666-y. |
[24] |
S. J. Patterson, Diophantine approximation in Fuchsian groups, Philos. Trans. Roy. Soc. London Ser. A, 282 (1976), 527-563. |
[25] |
C. Pugh and M. Shub, Ergodic elements of ergodic actions, Compositio Math., 23 (1971), 115-122. |
[26] |
D. Ralston and S. Troubetzkoy, Ergodic infinite group extensions of geodesic flows on translation surfaces, preprint, arXiv:1201.3738, (2012). |
[27] |
K. Schmidt, "Cocycles of Ergodic Transformation Groups," Lecture Notes in Mathematics, Vol. 1, Macmillan Company of India, Ltd., Delhi, India, 1977. |
[28] |
_____, A cylinder flow arising from irregularity of distribution, Compositio Mathematica, 36 (1978), 225-232. |
[29] |
D. Sullivan, Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math., 149 (1982), 215-237.doi: 10.1007/BF02392354. |
[30] |
S. Troubetzkoy, Recurrence in generic staircases, Discrete Contin. Dyn. Syst., 32 (2012), 1047-1053.doi: 10.3934/dcds.2012.32.1047. |
[31] |
W. Veech, Boshernitzan's criterion for unique ergodicity of an interval exchange transformation, Erg. Thry. Dyn. Sys., 7 (1987), 149-153.doi: 10.1017/S0143385700003862. |
[32] |
A. Zorich, Flat surfaces, in "Frontiers in Number Theory, Physics, and Geometry. I," Springer, Berlin, (2006), 437-583.doi: 10.1007/978-3-540-31347-2_13. |