Citation: |
[1] |
E. Artin, Ein mechanisches System mit quasiergodischen Bahnen, Hamb. Math. Abh., 3 (1924), 170-177. |
[2] |
W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math., 92 (1988), 73-90.doi: 10.1007/BF01393993. |
[3] |
I. Efrat, Dynamics of the continued fraction map and the spectral theory of $SL(2,\mathbf Z)$, Invent. Math., 114 (1993), 207-218.doi: 10.1007/BF01232667. |
[4] |
É. Ghys, Knots and dynamics, in "International Congress of Mathematicians," Vol. I, Eur. Math. Soc., Zürich, (2007), 247-277.doi: 10.4171/022-1/11. |
[5] |
D. A. Hejhal, "The Selberg Trace Formula for $PSL(2, \mathbf R)$," Vol. 2, Lecture Notes in Mathematics, Vol. 1001, Springer-Verlag, Berlin, 1983. |
[6] |
T. Kato, "A Short Introduction to Perturbation Theory for Linear Operators," Springer-Verlag, New York-Berlin, 1982. |
[7] |
J. Korevaar, "Tauberian Theory. A Century of Developments," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 329, Springer-Verlag, Berlin, 2004. |
[8] |
A. Katsuda and T. Sunada, Closed orbits in homology classes, Inst. Hautes Études Sci. Publ. Math., No. 71 (1990), 5-32. |
[9] |
S. P. Lalley, Closed geodesics in homology classes on surfaces of variable negative curvature, Duke Math. J., 58 (1989), 795-821.doi: 10.1215/S0012-7094-89-05837-7. |
[10] |
D. H. Mayer, On a $\zeta$ function related to the continued fraction transformation, Bull. Soc. Math. France, 104 (1976), 195-203. |
[11] |
_____, The thermodynamic formalism approach to Selberg's zeta function for $PSL(2,\mathbf Z)$, Bull. Amer. Math. Soc. (N.S.), 25 (1991), 55-60.doi: 10.1090/S0273-0979-1991-16023-4. |
[12] |
C. J. Mozzochi, Linking numbers of modular geodesics, preprint, (2010). |
[13] |
M. Pollicott, Distribution of closed geodesics on the modular surface and quadratic irrationals, Bull. Soc. Math. France, 114 (1986), 431-446. |
[14] |
_____, Homology and closed geodesics in a compact negatively curved surface, Amer. J. Math., 113 (1991), 379-385.doi: 10.2307/2374830. |
[15] |
R. Phillips and P. Sarnak, Geodesics in homology classes, Duke Math. J., 55 (1987), 287-297.doi: 10.1215/S0012-7094-87-05515-3. |
[16] |
H. Rademacher and E. Grosswald, "Dedekind Sums," The Carus Mathematical Monographs, No. 16, The Mathematical Association of America, Washington, D. C., 1972. |
[17] |
P. Sarnak, Class numbers of indefinite binary quadratic forms, J. Number Theory, 15 (1982), 229-247.doi: 10.1016/0022-314X(82)90028-2. |
[18] |
_____, Reciprocal geodesics, in "Analytic Number Theory," Clay Math. Proc., 7, Amer. Math. Soc., Providence, RI, (2007), 217-237. |
[19] |
_____, Linking numbers of modular knots, Commun. Math. Anal., 8 (2010), 136-144. |
[20] |
C. Series, The modular surface and continued fractions, J. London Math. Soc. (2), 31 (1985), 69-80.doi: 10.1112/jlms/s2-31.1.69. |
[21] |
S. Zelditch, Trace formula for compact $\Gamma\backslash PSL_2(\mathbf R)$ and the equidistribution theory of closed geodesics, Duke Math. J., 59 (1989), 27-81.doi: 10.1215/S0012-7094-89-05902-4. |