\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Quadratic irrationals and linking numbers of modular knots

Abstract Related Papers Cited by
  • A closed geodesic on the modular surface gives rise to a knot on the 3-sphere with a trefoil knot removed, and one can compute the linking number of such a knot with the trefoil knot. We show that, when ordered by their length, the set of closed geodesics having a prescribed linking number become equidistributed on average with respect to the Liouville measure. We show this by using the thermodynamic formalism to prove an equidistribution result for a corresponding set of quadratic irrationals on the unit interval.
    Mathematics Subject Classification: Primary: 58F17; Secondary: 11F72, 30B70, 58F20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Artin, Ein mechanisches System mit quasiergodischen Bahnen, Hamb. Math. Abh., 3 (1924), 170-177.

    [2]

    W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math., 92 (1988), 73-90.doi: 10.1007/BF01393993.

    [3]

    I. Efrat, Dynamics of the continued fraction map and the spectral theory of $SL(2,\mathbf Z)$, Invent. Math., 114 (1993), 207-218.doi: 10.1007/BF01232667.

    [4]

    É. Ghys, Knots and dynamics, in "International Congress of Mathematicians," Vol. I, Eur. Math. Soc., Zürich, (2007), 247-277.doi: 10.4171/022-1/11.

    [5]

    D. A. Hejhal, "The Selberg Trace Formula for $PSL(2, \mathbf R)$," Vol. 2, Lecture Notes in Mathematics, Vol. 1001, Springer-Verlag, Berlin, 1983.

    [6]

    T. Kato, "A Short Introduction to Perturbation Theory for Linear Operators," Springer-Verlag, New York-Berlin, 1982.

    [7]

    J. Korevaar, "Tauberian Theory. A Century of Developments," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 329, Springer-Verlag, Berlin, 2004.

    [8]

    A. Katsuda and T. Sunada, Closed orbits in homology classes, Inst. Hautes Études Sci. Publ. Math., No. 71 (1990), 5-32.

    [9]

    S. P. Lalley, Closed geodesics in homology classes on surfaces of variable negative curvature, Duke Math. J., 58 (1989), 795-821.doi: 10.1215/S0012-7094-89-05837-7.

    [10]

    D. H. Mayer, On a $\zeta$ function related to the continued fraction transformation, Bull. Soc. Math. France, 104 (1976), 195-203.

    [11]

    _____, The thermodynamic formalism approach to Selberg's zeta function for $PSL(2,\mathbf Z)$, Bull. Amer. Math. Soc. (N.S.), 25 (1991), 55-60.doi: 10.1090/S0273-0979-1991-16023-4.

    [12]

    C. J. Mozzochi, Linking numbers of modular geodesics, preprint, (2010).

    [13]

    M. Pollicott, Distribution of closed geodesics on the modular surface and quadratic irrationals, Bull. Soc. Math. France, 114 (1986), 431-446.

    [14]

    _____, Homology and closed geodesics in a compact negatively curved surface, Amer. J. Math., 113 (1991), 379-385.doi: 10.2307/2374830.

    [15]

    R. Phillips and P. Sarnak, Geodesics in homology classes, Duke Math. J., 55 (1987), 287-297.doi: 10.1215/S0012-7094-87-05515-3.

    [16]

    H. Rademacher and E. Grosswald, "Dedekind Sums," The Carus Mathematical Monographs, No. 16, The Mathematical Association of America, Washington, D. C., 1972.

    [17]

    P. Sarnak, Class numbers of indefinite binary quadratic forms, J. Number Theory, 15 (1982), 229-247.doi: 10.1016/0022-314X(82)90028-2.

    [18]

    _____, Reciprocal geodesics, in "Analytic Number Theory," Clay Math. Proc., 7, Amer. Math. Soc., Providence, RI, (2007), 217-237.

    [19]

    _____, Linking numbers of modular knots, Commun. Math. Anal., 8 (2010), 136-144.

    [20]

    C. Series, The modular surface and continued fractions, J. London Math. Soc. (2), 31 (1985), 69-80.doi: 10.1112/jlms/s2-31.1.69.

    [21]

    S. Zelditch, Trace formula for compact $\Gamma\backslash PSL_2(\mathbf R)$ and the equidistribution theory of closed geodesics, Duke Math. J., 59 (1989), 27-81.doi: 10.1215/S0012-7094-89-05902-4.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(140) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return