January  2012, 6(1): 79-120. doi: 10.3934/jmd.2012.6.79

Hölder foliations, revisited

1. 

Department ofMathematics, University of Chicago, 5734 S. University Ave., Chicago, Illinois 60637, United States, United States

2. 

CONICET, IMAS, Universidad de Buenos Aires, Buenos Aires, Argentina

Received  December 2011 Published  May 2012

We investigate transverse Hölder regularity of some canonical leaf conjugacies in normally hyperbolic dynamical systems and transverse Hölder regularity of some invariant foliations. Our results validate claims made elsewhere in the literature.
Citation: Charles Pugh, Michael Shub, Amie Wilkinson. Hölder foliations, revisited. Journal of Modern Dynamics, 2012, 6 (1) : 79-120. doi: 10.3934/jmd.2012.6.79
References:
[1]

D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature,, (Russian), 90 (1967).   Google Scholar

[2]

D. Bohnet, "Partially Hyperbolic Systems with a Compact Center Foliation with Finite Holonomy,", Ph.D Thesis, (2011).   Google Scholar

[3]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds,, Topology, 44 (2005), 475.  doi: 10.1016/j.top.2004.10.009.  Google Scholar

[4]

K. Burns and A. Wilkinson, Dynamical coherence and center bunching,, Discrete Contin. Dyn. Syst., 22 (2008), 89.  doi: 10.3934/dcds.2008.22.89.  Google Scholar

[5]

P. Carrasco, "Compact Dynamical Foliations,", Ph.D Thesis, (2010).   Google Scholar

[6]

J. Cheeger and D. Ebin, "Comparison Theorems in Riemannian Geometry,", North-Holland Mathematical Library, (1975).   Google Scholar

[7]

D. Chillingworth, unpublished,, circa 1970., (1970).   Google Scholar

[8]

D. Damjanović and A. Katok, Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic $\mathbb R^k$ actions,, Discrete Contin. Dyn. Syst., 13 (2005), 985.  doi: 10.3934/dcds.2005.13.985.  Google Scholar

[9]

D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions. II. The geometric method and restrictions of Weyl chamber flows on $SL(n,\mathbbR)$/$Gamma$,, Int. Math. Res. Not. IMRN, 2011 (): 4405.   Google Scholar

[10]

D. Epstein, Foliations with all leaves compact,, Ann. Inst. Fourier (Grenoble), 26 (1976), 265.  doi: 10.5802/aif.607.  Google Scholar

[11]

A. Hammerlindl, Quasi-isometry and plaque expansiveness,, Canadian Mathematical Bulletin, 54 (2011), 676.  doi: 10.4153/CMB-2011-024-7.  Google Scholar

[12]

B. Hasselblatt, Regularity of the Anosov splitting. II,, Ergodic Theory Dynam. Systems, 17 (1997), 169.  doi: 10.1017/S0143385797069757.  Google Scholar

[13]

B. Hasselblatt and A. Wilkinson, Prevalence of non-Lipschitz Anosov foliations,, Ergodic Theory Dynam. Systems, 19 (1999), 643.  doi: 10.1017/S0143385799133868.  Google Scholar

[14]

F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics,, in, 51 (2007), 35.   Google Scholar

[15]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Mathematics, 583 (1977).   Google Scholar

[16]

Y. Ilyashenko and A. Negut, Hölder properties of perturbed skew products and Fubini regained,, preprint., ().   Google Scholar

[17]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", With a supplementary chapter by Katok and Leonardo Mendoza, 54 (1995).   Google Scholar

[18]

V. Niţică and A. Török, Cohomology of dynamical systems and rigidity of partially hyperbolic actions of higher-rank lattices,, Duke Math. J., 79 (1995), 751.   Google Scholar

[19]

C. Pugh, M. Shub and A. Wilkinson, Hölder foliations,, Duke Math. J., 86 (1997), 517.  doi: 10.1215/S0012-7094-97-08616-6.  Google Scholar

[20]

C. Pugh, M. Shub and A. Wilkinson, Correction to: "Hölder foliations,", Duke Math. J., 105 (2000), 105.   Google Scholar

[21]

J. Schmeling and Ra. Siegmund-Schultze, Hölder-continuity of the holonomy maps for hyperbolic sets,, in, 1514 (1992), 174.   Google Scholar

[22]

M. Shub, "Global Stability of Dynamical Systems,", With the collaboration of Albert Fathi and Rémi Langevin, (1987).   Google Scholar

[23]

A. Wilkinson, Stable ergodicity of the time-one map of a geodesic flow,, Ergod. Th. & Dynam. Sys., 18 (1998), 1545.   Google Scholar

[24]

A. Wilkinson, The cohomological equation for partially hyperbolic diffeomorphisms,, preprint, (2008).   Google Scholar

show all references

References:
[1]

D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature,, (Russian), 90 (1967).   Google Scholar

[2]

D. Bohnet, "Partially Hyperbolic Systems with a Compact Center Foliation with Finite Holonomy,", Ph.D Thesis, (2011).   Google Scholar

[3]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds,, Topology, 44 (2005), 475.  doi: 10.1016/j.top.2004.10.009.  Google Scholar

[4]

K. Burns and A. Wilkinson, Dynamical coherence and center bunching,, Discrete Contin. Dyn. Syst., 22 (2008), 89.  doi: 10.3934/dcds.2008.22.89.  Google Scholar

[5]

P. Carrasco, "Compact Dynamical Foliations,", Ph.D Thesis, (2010).   Google Scholar

[6]

J. Cheeger and D. Ebin, "Comparison Theorems in Riemannian Geometry,", North-Holland Mathematical Library, (1975).   Google Scholar

[7]

D. Chillingworth, unpublished,, circa 1970., (1970).   Google Scholar

[8]

D. Damjanović and A. Katok, Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic $\mathbb R^k$ actions,, Discrete Contin. Dyn. Syst., 13 (2005), 985.  doi: 10.3934/dcds.2005.13.985.  Google Scholar

[9]

D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions. II. The geometric method and restrictions of Weyl chamber flows on $SL(n,\mathbbR)$/$Gamma$,, Int. Math. Res. Not. IMRN, 2011 (): 4405.   Google Scholar

[10]

D. Epstein, Foliations with all leaves compact,, Ann. Inst. Fourier (Grenoble), 26 (1976), 265.  doi: 10.5802/aif.607.  Google Scholar

[11]

A. Hammerlindl, Quasi-isometry and plaque expansiveness,, Canadian Mathematical Bulletin, 54 (2011), 676.  doi: 10.4153/CMB-2011-024-7.  Google Scholar

[12]

B. Hasselblatt, Regularity of the Anosov splitting. II,, Ergodic Theory Dynam. Systems, 17 (1997), 169.  doi: 10.1017/S0143385797069757.  Google Scholar

[13]

B. Hasselblatt and A. Wilkinson, Prevalence of non-Lipschitz Anosov foliations,, Ergodic Theory Dynam. Systems, 19 (1999), 643.  doi: 10.1017/S0143385799133868.  Google Scholar

[14]

F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics,, in, 51 (2007), 35.   Google Scholar

[15]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Mathematics, 583 (1977).   Google Scholar

[16]

Y. Ilyashenko and A. Negut, Hölder properties of perturbed skew products and Fubini regained,, preprint., ().   Google Scholar

[17]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", With a supplementary chapter by Katok and Leonardo Mendoza, 54 (1995).   Google Scholar

[18]

V. Niţică and A. Török, Cohomology of dynamical systems and rigidity of partially hyperbolic actions of higher-rank lattices,, Duke Math. J., 79 (1995), 751.   Google Scholar

[19]

C. Pugh, M. Shub and A. Wilkinson, Hölder foliations,, Duke Math. J., 86 (1997), 517.  doi: 10.1215/S0012-7094-97-08616-6.  Google Scholar

[20]

C. Pugh, M. Shub and A. Wilkinson, Correction to: "Hölder foliations,", Duke Math. J., 105 (2000), 105.   Google Scholar

[21]

J. Schmeling and Ra. Siegmund-Schultze, Hölder-continuity of the holonomy maps for hyperbolic sets,, in, 1514 (1992), 174.   Google Scholar

[22]

M. Shub, "Global Stability of Dynamical Systems,", With the collaboration of Albert Fathi and Rémi Langevin, (1987).   Google Scholar

[23]

A. Wilkinson, Stable ergodicity of the time-one map of a geodesic flow,, Ergod. Th. & Dynam. Sys., 18 (1998), 1545.   Google Scholar

[24]

A. Wilkinson, The cohomological equation for partially hyperbolic diffeomorphisms,, preprint, (2008).   Google Scholar

[1]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[2]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[3]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[4]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[5]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[6]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[7]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[8]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020409

[9]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[10]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[11]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[12]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[13]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[14]

Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056

[15]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[16]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[17]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[18]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[19]

João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321

[20]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]