January  2012, 6(1): 79-120. doi: 10.3934/jmd.2012.6.79

Hölder foliations, revisited

1. 

Department ofMathematics, University of Chicago, 5734 S. University Ave., Chicago, Illinois 60637, United States, United States

2. 

CONICET, IMAS, Universidad de Buenos Aires, Buenos Aires, Argentina

Received  December 2011 Published  May 2012

We investigate transverse Hölder regularity of some canonical leaf conjugacies in normally hyperbolic dynamical systems and transverse Hölder regularity of some invariant foliations. Our results validate claims made elsewhere in the literature.
Citation: Charles Pugh, Michael Shub, Amie Wilkinson. Hölder foliations, revisited. Journal of Modern Dynamics, 2012, 6 (1) : 79-120. doi: 10.3934/jmd.2012.6.79
References:
[1]

D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature,, (Russian), 90 (1967).   Google Scholar

[2]

D. Bohnet, "Partially Hyperbolic Systems with a Compact Center Foliation with Finite Holonomy,", Ph.D Thesis, (2011).   Google Scholar

[3]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds,, Topology, 44 (2005), 475.  doi: 10.1016/j.top.2004.10.009.  Google Scholar

[4]

K. Burns and A. Wilkinson, Dynamical coherence and center bunching,, Discrete Contin. Dyn. Syst., 22 (2008), 89.  doi: 10.3934/dcds.2008.22.89.  Google Scholar

[5]

P. Carrasco, "Compact Dynamical Foliations,", Ph.D Thesis, (2010).   Google Scholar

[6]

J. Cheeger and D. Ebin, "Comparison Theorems in Riemannian Geometry,", North-Holland Mathematical Library, (1975).   Google Scholar

[7]

D. Chillingworth, unpublished,, circa 1970., (1970).   Google Scholar

[8]

D. Damjanović and A. Katok, Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic $\mathbb R^k$ actions,, Discrete Contin. Dyn. Syst., 13 (2005), 985.  doi: 10.3934/dcds.2005.13.985.  Google Scholar

[9]

D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions. II. The geometric method and restrictions of Weyl chamber flows on $SL(n,\mathbbR)$/$Gamma$,, Int. Math. Res. Not. IMRN, 2011 (): 4405.   Google Scholar

[10]

D. Epstein, Foliations with all leaves compact,, Ann. Inst. Fourier (Grenoble), 26 (1976), 265.  doi: 10.5802/aif.607.  Google Scholar

[11]

A. Hammerlindl, Quasi-isometry and plaque expansiveness,, Canadian Mathematical Bulletin, 54 (2011), 676.  doi: 10.4153/CMB-2011-024-7.  Google Scholar

[12]

B. Hasselblatt, Regularity of the Anosov splitting. II,, Ergodic Theory Dynam. Systems, 17 (1997), 169.  doi: 10.1017/S0143385797069757.  Google Scholar

[13]

B. Hasselblatt and A. Wilkinson, Prevalence of non-Lipschitz Anosov foliations,, Ergodic Theory Dynam. Systems, 19 (1999), 643.  doi: 10.1017/S0143385799133868.  Google Scholar

[14]

F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics,, in, 51 (2007), 35.   Google Scholar

[15]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Mathematics, 583 (1977).   Google Scholar

[16]

Y. Ilyashenko and A. Negut, Hölder properties of perturbed skew products and Fubini regained,, preprint., ().   Google Scholar

[17]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", With a supplementary chapter by Katok and Leonardo Mendoza, 54 (1995).   Google Scholar

[18]

V. Niţică and A. Török, Cohomology of dynamical systems and rigidity of partially hyperbolic actions of higher-rank lattices,, Duke Math. J., 79 (1995), 751.   Google Scholar

[19]

C. Pugh, M. Shub and A. Wilkinson, Hölder foliations,, Duke Math. J., 86 (1997), 517.  doi: 10.1215/S0012-7094-97-08616-6.  Google Scholar

[20]

C. Pugh, M. Shub and A. Wilkinson, Correction to: "Hölder foliations,", Duke Math. J., 105 (2000), 105.   Google Scholar

[21]

J. Schmeling and Ra. Siegmund-Schultze, Hölder-continuity of the holonomy maps for hyperbolic sets,, in, 1514 (1992), 174.   Google Scholar

[22]

M. Shub, "Global Stability of Dynamical Systems,", With the collaboration of Albert Fathi and Rémi Langevin, (1987).   Google Scholar

[23]

A. Wilkinson, Stable ergodicity of the time-one map of a geodesic flow,, Ergod. Th. & Dynam. Sys., 18 (1998), 1545.   Google Scholar

[24]

A. Wilkinson, The cohomological equation for partially hyperbolic diffeomorphisms,, preprint, (2008).   Google Scholar

show all references

References:
[1]

D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature,, (Russian), 90 (1967).   Google Scholar

[2]

D. Bohnet, "Partially Hyperbolic Systems with a Compact Center Foliation with Finite Holonomy,", Ph.D Thesis, (2011).   Google Scholar

[3]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds,, Topology, 44 (2005), 475.  doi: 10.1016/j.top.2004.10.009.  Google Scholar

[4]

K. Burns and A. Wilkinson, Dynamical coherence and center bunching,, Discrete Contin. Dyn. Syst., 22 (2008), 89.  doi: 10.3934/dcds.2008.22.89.  Google Scholar

[5]

P. Carrasco, "Compact Dynamical Foliations,", Ph.D Thesis, (2010).   Google Scholar

[6]

J. Cheeger and D. Ebin, "Comparison Theorems in Riemannian Geometry,", North-Holland Mathematical Library, (1975).   Google Scholar

[7]

D. Chillingworth, unpublished,, circa 1970., (1970).   Google Scholar

[8]

D. Damjanović and A. Katok, Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic $\mathbb R^k$ actions,, Discrete Contin. Dyn. Syst., 13 (2005), 985.  doi: 10.3934/dcds.2005.13.985.  Google Scholar

[9]

D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions. II. The geometric method and restrictions of Weyl chamber flows on $SL(n,\mathbbR)$/$Gamma$,, Int. Math. Res. Not. IMRN, 2011 (): 4405.   Google Scholar

[10]

D. Epstein, Foliations with all leaves compact,, Ann. Inst. Fourier (Grenoble), 26 (1976), 265.  doi: 10.5802/aif.607.  Google Scholar

[11]

A. Hammerlindl, Quasi-isometry and plaque expansiveness,, Canadian Mathematical Bulletin, 54 (2011), 676.  doi: 10.4153/CMB-2011-024-7.  Google Scholar

[12]

B. Hasselblatt, Regularity of the Anosov splitting. II,, Ergodic Theory Dynam. Systems, 17 (1997), 169.  doi: 10.1017/S0143385797069757.  Google Scholar

[13]

B. Hasselblatt and A. Wilkinson, Prevalence of non-Lipschitz Anosov foliations,, Ergodic Theory Dynam. Systems, 19 (1999), 643.  doi: 10.1017/S0143385799133868.  Google Scholar

[14]

F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics,, in, 51 (2007), 35.   Google Scholar

[15]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Mathematics, 583 (1977).   Google Scholar

[16]

Y. Ilyashenko and A. Negut, Hölder properties of perturbed skew products and Fubini regained,, preprint., ().   Google Scholar

[17]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", With a supplementary chapter by Katok and Leonardo Mendoza, 54 (1995).   Google Scholar

[18]

V. Niţică and A. Török, Cohomology of dynamical systems and rigidity of partially hyperbolic actions of higher-rank lattices,, Duke Math. J., 79 (1995), 751.   Google Scholar

[19]

C. Pugh, M. Shub and A. Wilkinson, Hölder foliations,, Duke Math. J., 86 (1997), 517.  doi: 10.1215/S0012-7094-97-08616-6.  Google Scholar

[20]

C. Pugh, M. Shub and A. Wilkinson, Correction to: "Hölder foliations,", Duke Math. J., 105 (2000), 105.   Google Scholar

[21]

J. Schmeling and Ra. Siegmund-Schultze, Hölder-continuity of the holonomy maps for hyperbolic sets,, in, 1514 (1992), 174.   Google Scholar

[22]

M. Shub, "Global Stability of Dynamical Systems,", With the collaboration of Albert Fathi and Rémi Langevin, (1987).   Google Scholar

[23]

A. Wilkinson, Stable ergodicity of the time-one map of a geodesic flow,, Ergod. Th. & Dynam. Sys., 18 (1998), 1545.   Google Scholar

[24]

A. Wilkinson, The cohomological equation for partially hyperbolic diffeomorphisms,, preprint, (2008).   Google Scholar

[1]

Rafael Potrie. Partial hyperbolicity and foliations in $\mathbb{T}^3$. Journal of Modern Dynamics, 2015, 9: 81-121. doi: 10.3934/jmd.2015.9.81

[2]

Boris Hasselblatt. Critical regularity of invariant foliations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 931-937. doi: 10.3934/dcds.2002.8.931

[3]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[4]

Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901

[5]

Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639

[6]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[7]

Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227

[8]

Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187

[9]

Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527

[10]

Andy Hammerlindl. Partial hyperbolicity on 3-dimensional nilmanifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3641-3669. doi: 10.3934/dcds.2013.33.3641

[11]

Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006

[12]

Luis Barreira, Claudia Valls. Regularity of center manifolds under nonuniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 55-76. doi: 10.3934/dcds.2011.30.55

[13]

Marcin Mazur, Jacek Tabor, Piotr Kościelniak. Semi-hyperbolicity and hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1029-1038. doi: 10.3934/dcds.2008.20.1029

[14]

Marcin Mazur, Jacek Tabor. Computational hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1175-1189. doi: 10.3934/dcds.2011.29.1175

[15]

Boris Hasselblatt, Yakov Pesin, Jörg Schmeling. Pointwise hyperbolicity implies uniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2819-2827. doi: 10.3934/dcds.2014.34.2819

[16]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[17]

Gabriel Ponce, Ali Tahzibi, Régis Varão. Minimal yet measurable foliations. Journal of Modern Dynamics, 2014, 8 (1) : 93-107. doi: 10.3934/jmd.2014.8.93

[18]

Radu Saghin. Note on homology of expanding foliations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 349-360. doi: 10.3934/dcdss.2009.2.349

[19]

Percy Fernández-Sánchez, Jorge Mozo-Fernández, Hernán Neciosup. Dicritical nilpotent holomorphic foliations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3223-3237. doi: 10.3934/dcds.2018140

[20]

Toshikazu Ito, Bruno Scárdua. Holomorphic foliations transverse to manifolds with corners. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 537-544. doi: 10.3934/dcds.2009.25.537

2018 Impact Factor: 0.295

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]