January  2013, 7(1): 1-29. doi: 10.3934/jmd.2013.7.1

Divergent trajectories in the periodic wind-tree model

1. 

Université Paris 7, Département de Mathématiques, Bâtiment Sophie Germain, 8 Place FM/13, 75013 Paris, France

Received  April 2012 Published  May 2013

The periodic wind-tree model is a family $T(a,b)$ of billiards in the plane in which identical rectangular scatterers of size $a \times b$ are disposed periodically at each integer point. In that model, the recurrence is generic with respect to the parameters $a$, $b$, and the angle $\theta$ of initial direction of the particule. In contrast, we prove that for some parameters $(a,b)$ the set of angles $\theta$ for which the billiard flow is divergent has Hausdorff dimension greater than one half.
Citation: Vincent Delecroix. Divergent trajectories in the periodic wind-tree model. Journal of Modern Dynamics, 2013, 7 (1) : 1-29. doi: 10.3934/jmd.2013.7.1
References:
[1]

A. Avila and P. Hubert, Recurrence for the windtree model,, preprint., ().   Google Scholar

[2]

K. Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc., 17 (2004), 871-908. doi: 10.1090/S0894-0347-04-00461-8.  Google Scholar

[3]

N. Chevallier and J.-P. Conze, Examples of recurrent or transient stationary walks in $\mathbbR^d$ over a rotation of $\mathbbT^2$, in "Ergodic Theory," Contemp. Math., 485, Amer. Math. Soc., (2009), 71-84. doi: 10.1090/conm/485/09493.  Google Scholar

[4]

J.-P. Conze, Recurrence, ergodicity and invariant measures for cocycles over a rotation, in "Ergodic Theory," Contemp. Math., 485, Amer. Math. Soc., (2009), 45-70. doi: 10.1090/conm/485/09492.  Google Scholar

[5]

J.-P. Conze and E. Gutkin, On recurrence and ergodicity for geodesic flows on non-compact periodic polygonal surfaces, Erg. Th. and Dyn. Syst., 32, (2012), 491-515. doi: 10.1017/S0143385711001003.  Google Scholar

[6]

V. Delecroix, P. Hubert and S. Lelièvre, Diffusion for the periodic the wind-tree model,, preprint, ().   Google Scholar

[7]

V. Delecroix and C. Ulcigrai, Diagonal changes in hyperelliptic strata. A natural extension to Ferenczi-Zamboni induction,, preprint., ().   Google Scholar

[8]

P. Ehrenfeset and T. Ehrenfest, The conceptual foundations of the statistical approach in mechanics, Translated from the German by Michael J. Moravcsik, Reprint of the 1959 English edition, Dover Publications, Inc., New York, 1990.  Google Scholar

[9]

S. Ferenczi and L. Zamboni, Structure of $K$-interval-exchange transformations: Induction trajectories, and distance theorems, J. Anal. Math., 112 (2010), 289-328. doi: 10.1007/s11854-010-0031-2.  Google Scholar

[10]

S. Ferenczi and L. Zamboni, Eigenvalues and simplicity of interval-exchange transformations, Ann. Sci. Éc. Norm. Sup. (4), 44 (2011), 361-392.  Google Scholar

[11]

R. Fox and R. Kershner, Concerning the transitive properties of geodesics in rational polyhedron, Duke Math. J., 2 (1936), 147-150. doi: 10.1215/S0012-7094-36-00213-2.  Google Scholar

[12]

K. Frączek and C. Ulcigrai, Non-ergodic $\ZZ$-periodic billiards and infinite translation surfaces,, preprint, ().   Google Scholar

[13]

, K. Frączek and C. Ulcigrai,, \textit{Ergodic directions for billiards in a strip with periodically located obstacles}, ().   Google Scholar

[14]

J. Hardy and J. Weber, Diffusion in a periodic wind-tree model, J. Math. Phys., 21 (1980), 1802-1808. doi: 10.1063/1.524633.  Google Scholar

[15]

D. Hensley, "Continued Fractions," World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. doi: 10.1142/9789812774682.  Google Scholar

[16]

P. Hooper, The invariant measures of some infinite interval-exchange maps,, preprint, ().   Google Scholar

[17]

P. Hooper, P. Hubert and B. Weiss, Dynamics on the infinite stair case surface,, to appear in Dis. Cont. Dyn. Sys., ().   Google Scholar

[18]

P. Hooper and B. Weiss, Generalized staircases: Recurrence and symmetry, Ann. Inst. Fourier, 62 (2012), 1581-1600. doi: 10.5802/aif.2730.  Google Scholar

[19]

P. Hubert and S. Lelièvre, Prime arithmetic Teichmüller discs in $\mathcalH(2)$, Israel J. Math., 151 (2006), 281-321. doi: 10.1007/BF02777365.  Google Scholar

[20]

P. Hubert, S. Lelièvre and S. Troubetzkoy, The Ehrenfest wind-tree model: Periodic directions, recurrence, diffusion, J. Reine Angew. Math., 656 (2011), 223-244. doi: 10.1515/CRELLE.2011.052.  Google Scholar

[21]

P. Hubert and G. Schmithüsen, Infinite translation surfaces with infinitely generated Veech groups, J. Mod. Dyn., 4 (2010), 715-732. doi: 10.3934/jmd.2010.4.715.  Google Scholar

[22]

, P. Hubert and C. Ulcigrai,, \emph{Private communication}., ().   Google Scholar

[23]

P. Hubert and B. Weiss, Ergodicity for infinite periodic translation surfaces,, preprint., ().   Google Scholar

[24]

A. Katok and A. Zemljakov, Topological transitivity of billiards in polygons, (Russian) Mat. Zametki, 18 (1975), 291-300.  Google Scholar

[25]

M. Keane, Interval-exchange transformations, Math. Z., 141 (1975), 25-31. doi: 10.1007/BF01236981.  Google Scholar

[26]

H. Masur and S. Tabachnikov, Rational billiards and flat structures, in "Handbook of Dynamical Systems," Vol. 1A, North-Holland, Amsterdam, (2002), 1015-1089. doi: 10.1016/S1874-575X(02)80015-7.  Google Scholar

[27]

C. McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc., 16 (2003), 875-885. doi: 10.1090/S0894-0347-03-00432-6.  Google Scholar

[28]

G. Rauzy, Échanges d'intervalles et transformations induites, Acta Arith., 34 (1979), 315-328.  Google Scholar

[29]

J. Smillie and C. Ulcigrai, Beyond Sturmian sequences: Coding linear trajectories in the regular octagon, Proc. Lond. Math. Soc., 102 (2011), 291-340. doi: 10.1112/plms/pdq018.  Google Scholar

[30]

S. Tabachnikov, "Billards," Panoramas et Synthèses, Société Mathématiques de France, 1995. Google Scholar

[31]

W. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982), 201-242. doi: 10.2307/1971391.  Google Scholar

[32]

W. Veech, Teichmüller curves in moduli spaces, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583. doi: 10.1007/BF01388890.  Google Scholar

[33]

M. Viana, Dynamics of interval-exchange maps and Teichmüller flows,, preprint. Available from: \url{http://w3.impa.br/~viana/out/ietf.pdf}., ().   Google Scholar

[34]

A. Zorich, Flat surfaces, in "Frontiers in Number Theory, Physics, and Geometry. 1" Springer, Berlin, (2006), 437-583. doi: 10.1007/978-3-540-31347-2_13.  Google Scholar

[35]

W. Stein, et al., Sage Mathematics Software (Version 4.5.2),, 2009. Available from: \url{http://www.sagemath.org}., ().   Google Scholar

show all references

References:
[1]

A. Avila and P. Hubert, Recurrence for the windtree model,, preprint., ().   Google Scholar

[2]

K. Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc., 17 (2004), 871-908. doi: 10.1090/S0894-0347-04-00461-8.  Google Scholar

[3]

N. Chevallier and J.-P. Conze, Examples of recurrent or transient stationary walks in $\mathbbR^d$ over a rotation of $\mathbbT^2$, in "Ergodic Theory," Contemp. Math., 485, Amer. Math. Soc., (2009), 71-84. doi: 10.1090/conm/485/09493.  Google Scholar

[4]

J.-P. Conze, Recurrence, ergodicity and invariant measures for cocycles over a rotation, in "Ergodic Theory," Contemp. Math., 485, Amer. Math. Soc., (2009), 45-70. doi: 10.1090/conm/485/09492.  Google Scholar

[5]

J.-P. Conze and E. Gutkin, On recurrence and ergodicity for geodesic flows on non-compact periodic polygonal surfaces, Erg. Th. and Dyn. Syst., 32, (2012), 491-515. doi: 10.1017/S0143385711001003.  Google Scholar

[6]

V. Delecroix, P. Hubert and S. Lelièvre, Diffusion for the periodic the wind-tree model,, preprint, ().   Google Scholar

[7]

V. Delecroix and C. Ulcigrai, Diagonal changes in hyperelliptic strata. A natural extension to Ferenczi-Zamboni induction,, preprint., ().   Google Scholar

[8]

P. Ehrenfeset and T. Ehrenfest, The conceptual foundations of the statistical approach in mechanics, Translated from the German by Michael J. Moravcsik, Reprint of the 1959 English edition, Dover Publications, Inc., New York, 1990.  Google Scholar

[9]

S. Ferenczi and L. Zamboni, Structure of $K$-interval-exchange transformations: Induction trajectories, and distance theorems, J. Anal. Math., 112 (2010), 289-328. doi: 10.1007/s11854-010-0031-2.  Google Scholar

[10]

S. Ferenczi and L. Zamboni, Eigenvalues and simplicity of interval-exchange transformations, Ann. Sci. Éc. Norm. Sup. (4), 44 (2011), 361-392.  Google Scholar

[11]

R. Fox and R. Kershner, Concerning the transitive properties of geodesics in rational polyhedron, Duke Math. J., 2 (1936), 147-150. doi: 10.1215/S0012-7094-36-00213-2.  Google Scholar

[12]

K. Frączek and C. Ulcigrai, Non-ergodic $\ZZ$-periodic billiards and infinite translation surfaces,, preprint, ().   Google Scholar

[13]

, K. Frączek and C. Ulcigrai,, \textit{Ergodic directions for billiards in a strip with periodically located obstacles}, ().   Google Scholar

[14]

J. Hardy and J. Weber, Diffusion in a periodic wind-tree model, J. Math. Phys., 21 (1980), 1802-1808. doi: 10.1063/1.524633.  Google Scholar

[15]

D. Hensley, "Continued Fractions," World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. doi: 10.1142/9789812774682.  Google Scholar

[16]

P. Hooper, The invariant measures of some infinite interval-exchange maps,, preprint, ().   Google Scholar

[17]

P. Hooper, P. Hubert and B. Weiss, Dynamics on the infinite stair case surface,, to appear in Dis. Cont. Dyn. Sys., ().   Google Scholar

[18]

P. Hooper and B. Weiss, Generalized staircases: Recurrence and symmetry, Ann. Inst. Fourier, 62 (2012), 1581-1600. doi: 10.5802/aif.2730.  Google Scholar

[19]

P. Hubert and S. Lelièvre, Prime arithmetic Teichmüller discs in $\mathcalH(2)$, Israel J. Math., 151 (2006), 281-321. doi: 10.1007/BF02777365.  Google Scholar

[20]

P. Hubert, S. Lelièvre and S. Troubetzkoy, The Ehrenfest wind-tree model: Periodic directions, recurrence, diffusion, J. Reine Angew. Math., 656 (2011), 223-244. doi: 10.1515/CRELLE.2011.052.  Google Scholar

[21]

P. Hubert and G. Schmithüsen, Infinite translation surfaces with infinitely generated Veech groups, J. Mod. Dyn., 4 (2010), 715-732. doi: 10.3934/jmd.2010.4.715.  Google Scholar

[22]

, P. Hubert and C. Ulcigrai,, \emph{Private communication}., ().   Google Scholar

[23]

P. Hubert and B. Weiss, Ergodicity for infinite periodic translation surfaces,, preprint., ().   Google Scholar

[24]

A. Katok and A. Zemljakov, Topological transitivity of billiards in polygons, (Russian) Mat. Zametki, 18 (1975), 291-300.  Google Scholar

[25]

M. Keane, Interval-exchange transformations, Math. Z., 141 (1975), 25-31. doi: 10.1007/BF01236981.  Google Scholar

[26]

H. Masur and S. Tabachnikov, Rational billiards and flat structures, in "Handbook of Dynamical Systems," Vol. 1A, North-Holland, Amsterdam, (2002), 1015-1089. doi: 10.1016/S1874-575X(02)80015-7.  Google Scholar

[27]

C. McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc., 16 (2003), 875-885. doi: 10.1090/S0894-0347-03-00432-6.  Google Scholar

[28]

G. Rauzy, Échanges d'intervalles et transformations induites, Acta Arith., 34 (1979), 315-328.  Google Scholar

[29]

J. Smillie and C. Ulcigrai, Beyond Sturmian sequences: Coding linear trajectories in the regular octagon, Proc. Lond. Math. Soc., 102 (2011), 291-340. doi: 10.1112/plms/pdq018.  Google Scholar

[30]

S. Tabachnikov, "Billards," Panoramas et Synthèses, Société Mathématiques de France, 1995. Google Scholar

[31]

W. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982), 201-242. doi: 10.2307/1971391.  Google Scholar

[32]

W. Veech, Teichmüller curves in moduli spaces, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583. doi: 10.1007/BF01388890.  Google Scholar

[33]

M. Viana, Dynamics of interval-exchange maps and Teichmüller flows,, preprint. Available from: \url{http://w3.impa.br/~viana/out/ietf.pdf}., ().   Google Scholar

[34]

A. Zorich, Flat surfaces, in "Frontiers in Number Theory, Physics, and Geometry. 1" Springer, Berlin, (2006), 437-583. doi: 10.1007/978-3-540-31347-2_13.  Google Scholar

[35]

W. Stein, et al., Sage Mathematics Software (Version 4.5.2),, 2009. Available from: \url{http://www.sagemath.org}., ().   Google Scholar

[1]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[2]

Luca Marchese. The Khinchin Theorem for interval-exchange transformations. Journal of Modern Dynamics, 2011, 5 (1) : 123-183. doi: 10.3934/jmd.2011.5.123

[3]

Jon Chaika, David Damanik, Helge Krüger. Schrödinger operators defined by interval-exchange transformations. Journal of Modern Dynamics, 2009, 3 (2) : 253-270. doi: 10.3934/jmd.2009.3.253

[4]

Giovanni Forni. On the Brin Prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations. Journal of Modern Dynamics, 2012, 6 (2) : 139-182. doi: 10.3934/jmd.2012.6.139

[5]

Christopher F. Novak. Discontinuity-growth of interval-exchange maps. Journal of Modern Dynamics, 2009, 3 (3) : 379-405. doi: 10.3934/jmd.2009.3.379

[6]

Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010

[7]

Sébastien Ferenczi, Pascal Hubert. Rigidity of square-tiled interval exchange transformations. Journal of Modern Dynamics, 2019, 14: 153-177. doi: 10.3934/jmd.2019006

[8]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[9]

Jacek Brzykcy, Krzysztof Frączek. Disjointness of interval exchange transformations from systems of probabilistic origin. Discrete & Continuous Dynamical Systems, 2010, 27 (1) : 53-73. doi: 10.3934/dcds.2010.27.53

[10]

Jon Chaika, Alex Eskin. Möbius disjointness for interval exchange transformations on three intervals. Journal of Modern Dynamics, 2019, 14: 55-86. doi: 10.3934/jmd.2019003

[11]

Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. Journal of Modern Dynamics, 2009, 3 (1) : 35-49. doi: 10.3934/jmd.2009.3.35

[12]

Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3&4) : 271-436. doi: 10.3934/jmd.2014.8.271

[13]

Carlos Gutierrez, Simon Lloyd, Vladislav Medvedev, Benito Pires, Evgeny Zhuzhoma. Transitive circle exchange transformations with flips. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 251-263. doi: 10.3934/dcds.2010.26.251

[14]

David Cowan. A billiard model for a gas of particles with rotation. Discrete & Continuous Dynamical Systems, 2008, 22 (1&2) : 101-109. doi: 10.3934/dcds.2008.22.101

[15]

Jon Chaika, Howard Masur. There exists an interval exchange with a non-ergodic generic measure. Journal of Modern Dynamics, 2015, 9: 289-304. doi: 10.3934/jmd.2015.9.289

[16]

Davit Karagulyan. Hausdorff dimension of a class of three-interval exchange maps. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1257-1281. doi: 10.3934/dcds.2020077

[17]

Miaohua Jiang, Qiang Zhang. A coupled map lattice model of tree dispersion. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 83-101. doi: 10.3934/dcdsb.2008.9.83

[18]

Silvére Gangloff, Alonso Herrera, Cristobal Rojas, Mathieu Sablik. Computability of topological entropy: From general systems to transformations on Cantor sets and the interval. Discrete & Continuous Dynamical Systems, 2020, 40 (7) : 4259-4286. doi: 10.3934/dcds.2020180

[19]

Sergei Avdonin, Jonathan Bell. Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph. Inverse Problems & Imaging, 2015, 9 (3) : 645-659. doi: 10.3934/ipi.2015.9.645

[20]

Alberto Bressan, Michele Palladino. Well-posedness of a model for the growth of tree stems and vines. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2047-2064. doi: 10.3934/dcds.2018083

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]