-
Previous Article
Growth of quotients of groups acting by isometries on Gromov-hyperbolic spaces
- JMD Home
- This Issue
-
Next Article
Infinitely many lattice surfaces with special pseudo-Anosov maps
Robustly invariant sets in fiber contracting bundle flows
1. | Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria |
2. | Dipartimento di Matematica, II Università di Roma (Tor Vergata), Via della Ricerca Scientifica, 00133 Roma |
References:
[1] |
Viviane Baladi and Carlangelo Liverani, Exponential decay of correlations for piecewise cone hyperbolic contact flows, Communications in Mathematical Physics, 314 (2012), 689-773.
doi: 10.1007/s00220-012-1538-4. |
[2] |
Oliver Butterley and Carlangelo Liverani, Smooth Anosov flows: Correlation spectra and stability, J. Mod. Dyn., 1 (2007), 301-322.
doi: 10.3934/jmd.2007.1.301. |
[3] |
Paolo Giulietti, Carlangelo Liverani and Mark Pollicott, Anosov flows and dynamical zeta functions, Annals of Mathematics, 178 (2013), 687-773. |
[4] |
Sébastien Gouëzel and Carlangelo Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Systems, 26 (2006), 189-217.
doi: 10.1017/S0143385705000374. |
[5] |
Anatole Katok and Boris Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'' With a supplementary chapter by Katok and Leonardo Mendoza, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995. |
[6] |
Hubert Hennion, Sur un théorème spectral et son application aux noyaux Lipchitziens, Proceedings of the American Mathematical Society, 118 (1993), 627-634.
doi: 10.2307/2160348. |
[7] |
Morris W. Hirsch, Charles Pugh and Michael Shub, "Invariant Manifolds,'' Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977. |
[8] |
Lars Hörmander, "The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis,'' Second edition, Grundlehren der Mathematischen Wissenschaften, 256, Springer-Verlag, Berlin, 1990. |
[9] |
Carlangelo Liverani, On contact Anosov flows, Ann. of Math. (2), 159 (2004), 1275-1312.
doi: 10.4007/annals.2004.159.1275. |
[10] |
John N. Mather, Characterization of Anosov diffeomorphisms, Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math., 30 (1968), 479-483. |
[11] |
Roger D. Nussbaum, The radius of the essential spectrum, Duke Math. J., 37 (1970), 473-478.
doi: 10.1215/S0012-7094-70-03759-2. |
show all references
References:
[1] |
Viviane Baladi and Carlangelo Liverani, Exponential decay of correlations for piecewise cone hyperbolic contact flows, Communications in Mathematical Physics, 314 (2012), 689-773.
doi: 10.1007/s00220-012-1538-4. |
[2] |
Oliver Butterley and Carlangelo Liverani, Smooth Anosov flows: Correlation spectra and stability, J. Mod. Dyn., 1 (2007), 301-322.
doi: 10.3934/jmd.2007.1.301. |
[3] |
Paolo Giulietti, Carlangelo Liverani and Mark Pollicott, Anosov flows and dynamical zeta functions, Annals of Mathematics, 178 (2013), 687-773. |
[4] |
Sébastien Gouëzel and Carlangelo Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Systems, 26 (2006), 189-217.
doi: 10.1017/S0143385705000374. |
[5] |
Anatole Katok and Boris Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'' With a supplementary chapter by Katok and Leonardo Mendoza, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995. |
[6] |
Hubert Hennion, Sur un théorème spectral et son application aux noyaux Lipchitziens, Proceedings of the American Mathematical Society, 118 (1993), 627-634.
doi: 10.2307/2160348. |
[7] |
Morris W. Hirsch, Charles Pugh and Michael Shub, "Invariant Manifolds,'' Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977. |
[8] |
Lars Hörmander, "The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis,'' Second edition, Grundlehren der Mathematischen Wissenschaften, 256, Springer-Verlag, Berlin, 1990. |
[9] |
Carlangelo Liverani, On contact Anosov flows, Ann. of Math. (2), 159 (2004), 1275-1312.
doi: 10.4007/annals.2004.159.1275. |
[10] |
John N. Mather, Characterization of Anosov diffeomorphisms, Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math., 30 (1968), 479-483. |
[11] |
Roger D. Nussbaum, The radius of the essential spectrum, Duke Math. J., 37 (1970), 473-478.
doi: 10.1215/S0012-7094-70-03759-2. |
[1] |
Martin Brokate, Pavel Krejčí. Weak differentiability of scalar hysteresis operators. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2405-2421. doi: 10.3934/dcds.2015.35.2405 |
[2] |
Fritz Gesztesy, Roger Nichols. On absence of threshold resonances for Schrödinger and Dirac operators. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3427-3460. doi: 10.3934/dcdss.2020243 |
[3] |
Frédéric Naud. The Ruelle spectrum of generic transfer operators. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2521-2531. doi: 10.3934/dcds.2012.32.2521 |
[4] |
Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581 |
[5] |
Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917 |
[6] |
Vesselin Petkov, Luchezar Stoyanov. Ruelle transfer operators with two complex parameters and applications. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6413-6451. doi: 10.3934/dcds.2016077 |
[7] |
Gary Froyland, Cecilia González-Tokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249-278. doi: 10.3934/jcd.2014.1.249 |
[8] |
Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417 |
[9] |
Eberhard Bänsch, Steffen Basting, Rolf Krahl. Numerical simulation of two-phase flows with heat and mass transfer. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2325-2347. doi: 10.3934/dcds.2015.35.2325 |
[10] |
Katsukuni Nakagawa. Compactness of transfer operators and spectral representation of Ruelle zeta functions for super-continuous functions. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6331-6350. doi: 10.3934/dcds.2020282 |
[11] |
Elena Kartashova. Nonlinear resonances of water waves. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607 |
[12] |
Darryl D. Holm, Cornelia Vizman. Dual pairs in resonances. Journal of Geometric Mechanics, 2012, 4 (3) : 297-311. doi: 10.3934/jgm.2012.4.297 |
[13] |
Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems and Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225 |
[14] |
Kazuyuki Yagasaki. Degenerate resonances in forced oscillators. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 423-438. doi: 10.3934/dcdsb.2003.3.423 |
[15] |
Wael Bahsoun, Paweł Góra. SRB measures for certain Markov processes. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 17-37. doi: 10.3934/dcds.2011.30.17 |
[16] |
Dominic Veconi. SRB measures of singular hyperbolic attractors. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3415-3430. doi: 10.3934/dcds.2022020 |
[17] |
Chantelle Blachut, Cecilia González-Tokman. A tale of two vortices: How numerical ergodic theory and transfer operators reveal fundamental changes to coherent structures in non-autonomous dynamical systems. Journal of Computational Dynamics, 2020, 7 (2) : 369-399. doi: 10.3934/jcd.2020015 |
[18] |
Hiroaki Yoshimura, Jerrold E. Marsden. Dirac cotangent bundle reduction. Journal of Geometric Mechanics, 2009, 1 (1) : 87-158. doi: 10.3934/jgm.2009.1.87 |
[19] |
Indranil Biswas, Georg Schumacher, Lin Weng. Deligne pairing and determinant bundle. Electronic Research Announcements, 2011, 18: 91-96. doi: 10.3934/era.2011.18.91 |
[20] |
Dieter Bothe, Jan Prüss. Modeling and analysis of reactive multi-component two-phase flows with mass transfer and phase transition the isothermal incompressible case. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 673-696. doi: 10.3934/dcdss.2017034 |
2021 Impact Factor: 0.641
Tools
Metrics
Other articles
by authors
[Back to Top]