July  2013, 7(2): 291-328. doi: 10.3934/jmd.2013.7.291

On the deviation of ergodic averages for horocycle flows

Department of Mathematics, Box 480, Uppsala University, SE-75106 Uppsala, Sweden

Received  April 25, 2013

We give effective bounds on the deviation of ergodic averages for the horocycle flow on the unit tangent bundle of a noncompact hyperbolic surface of finite area. The bounds depend on the small eigenvalues of the Laplacian and on the rate of excursion into cusps for the geodesic corresponding to the given initial point. We also prove Ω-results which show that in a certain sense our bounds are essentially the best possible for any given initial point.

Citation: Andreas Strömbergsson. On the deviation of ergodic averages for horocycle flows. Journal of Modern Dynamics, 2013, 7 (2) : 291-328. doi: 10.3934/jmd.2013.7.291
References:
[1]

J. S. Athreya and Y. Cheung, A Poincaré section for horocycle flow on the space of lattices, to appear in Int. Math. Res. Not., arXiv: 1206.6597, (2013). doi: 10.1093/imrn/rnt003.

[2]

J. Bernstein and A. Reznikov, Analytic continuation of representations and estimates of automorphic forms, Ann. of Math. (2), 150 (1999), 329–352. doi: 10.2307/121105.

[3]

A. Borel, "Automorphic Forms on SL2(ℝ), " Cambridge Tracts in Mathematics, 130, Cambridge University Press, Cambridge, 1997. doi: 10.1017/CBO9780511896064.

[4]

A. Bufetov and G. Forni, Limit theorems for horocycle flows, arXiv: 1104.4502.

[5]

D. Bump, "Automorphic Forms and Representations, " Cambridge Studies in Advanced Mathematics, 55, Cambridge University Press, Cambridge, 1997. doi: 10.1017/CBO9780511609572.

[6]

M. Burger, Horocycle flow on geometrically finite surfaces, Duke Math. J., 61 (1990), 779-803. doi: 10.1215/S0012-7094-90-06129-0.

[7]

S. G. Dani, On uniformly distributed orbits of certain horocycle flows, Ergodic Theory Dynam. Systems, 2 (1982), 139-158.

[8]

S. G. Dani and J. Smillie, Uniform distribution of horocycle orbits for Fuchsian groups, Duke Math. J., 51 (1984), 185-194. doi: 10.1215/S0012-7094-84-05110-X.

[9]

M. EinsiedlerG. Margulis and A. Venkatesh, Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces, Invent. Math., 177 (2009), 137-212. doi: 10.1007/s00222-009-0177-7.

[10]

L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Math. J., 119 (2003), 465-526. doi: 10.1215/S0012-7094-03-11932-8.

[11]

L. Flaminio and G. Forni, personal communication, 2003.

[12]

B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2), 175 (2012), 465–540. doi: 10.4007/annals.2012.175.2.2.

[13]

J. L. Hafner, Some Remarks on odd Maass Wave forms (and a correction to "Zeros of L-functions attached to Maass forms" [Math. Z. 190 (1985), no. 1,113–128; MR0793354 (86m:11034)] by Hafner, C. Epstein and P. Sarnak), Math. Z., 196 (1987), 129-132. doi: 10.1007/BF01179274.

[14]

D. A. Hejhal, "The Selberg Trace Formula for PSL(2, ℝ). Vol. 2, " Lecture Notes in Math., 1001, Springer-Verlag, Berlin, 1983.

[15]

H. Iwaniec, "Introduction to the Spectral Theory of Automorphic Forms, " Biblioteca de la Revista Matemática Iberoamericana, Revista Matemática, Iberoamericana, Madrid, 1995.

[16]

A. Kontorovich and H. Oh, Almost prime Pythagorean Triples In Thin Orbits, J. Reine Angew. Math., 667 (2012), 89-131.

[17]

S. Lang, "SL(2, ℝ), " Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975.

[18]

M. Lee and H. Oh, Effective equidistribution of closed horocycles for geometrically finite surfaces, arXiv: 1202.0848.

[19]

J. Lehner, "Discontinuous Groups and Automorphic Functions, " Math. Surveys, No. Ⅷ, American Mathematical Society, Providence, R.I., 1964.

[20]

G. W. Mackey, "The Theory of Unitary Group Representations, " Chicago Lectures in Mathematics, Univ. of Chicago Press, Chicage, Ill.-London, 1976.

[21]

G. A. Margulis, Problems and conjectures in rigidity theory, in "Mathematics: Frontiers and Perspectives, " AMS, Providence, RI, (2000), 161–174.

[22]

F. Maucourant and B. Weiss, Lattice actions on the plane revisited, Geom. Dedicata, 157 (2012), 1-21. doi: 10.1007/s10711-011-9596-x.

[23]

M. V. Melián and D. Pestana, Geodesic excursions into cusps in finite-volume hyperbolic manifolds, Michigan Math. J., 40 (1993), 77-93. doi: 10.1307/mmj/1029004675.

[24]

T. Miyake, "Modular Forms, " Springer-Verlag, Berlin, 1989.

[25]

E. Nelson, Analytic vectors, Ann. of Math. (2), 70 (1959), 572–615. doi: 10.2307/1970331.

[26]

S. J. Patterson, Diophantine approximation in Fuchsian groups, Phil. Trans. Soc. London Ser. A, 282 (1976), 527-563. doi: 10.1098/rsta.1976.0063.

[27]

M. Ratner, The rate of mixing for geodesic and horocycle flows, Ergodic Theory Dynam. Systems, 7 (1987), 267-288. doi: 10.1017/S0143385700004004.

[28]

M. Ratner, Raghunathan's topological conjecture and distributions of unipotent flows, Duke Math. J., 63 (1991), 235-280. doi: 10.1215/S0012-7094-91-06311-8.

[29]

M. Ratner, Raghunathan's conjectures for SL(2, ℝ), Israel J. Math., 80 (1992), 1–31. doi: 10.1007/BF02808152.

[30]

P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math., 34 (1981), 719-739. doi: 10.1002/cpa.3160340602.

[31]

P. Sarnak and A. Ubis, The horocycle flow at prime times, arXiv: 1110.0777.

[32]

H. Shimizu, On discontinuous groups acting on the product of the upper half planes, Ann. Math. (2), 77 (1963), 33–71. doi: 10.2307/1970201.

[33]

A. Strömbergsson, On the uniform equidistribution of long closed horocycles, Duke Math. J., 123 (2004), 507-547. doi: 10.1215/S0012-7094-04-12334-6.

[34]

D. Sullivan, Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math., 149 (1982), 215-237. doi: 10.1007/BF02392354.

[35]

S. L. Velani, Diophantine approximation and Hausdorff dimension in Fuchsian groups, Math. Proc. Cambridge Philos. Soc., 113 (1993), 343-354. doi: 10.1017/S0305004100076015.

[36]

S. L. Velani, Geometrically finite groups, Khintchine-type theorems and Hausdorff dimension, Math. Proc. Cambridge Philos. Soc., 120 (1996), 647-662. doi: 10.1017/S0305004100001626.

[37]

A. Venkatesh, Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math. (2), 172 (2010), 989–1094. doi: 10.4007/annals.2010.172.989.

[38]

N. R. Wallach, "Real Reductive Groups. Ⅰ, Ⅱ, " Academic Press, Inc., Boston, MA, 1988, 1992.

[39]

G. N. Watson, "A Treatise on the Theory of Bessel Functions, " Cambridge Univ. Press, Cambridge, England; The Macmillan Company, New York, 1944.

show all references

References:
[1]

J. S. Athreya and Y. Cheung, A Poincaré section for horocycle flow on the space of lattices, to appear in Int. Math. Res. Not., arXiv: 1206.6597, (2013). doi: 10.1093/imrn/rnt003.

[2]

J. Bernstein and A. Reznikov, Analytic continuation of representations and estimates of automorphic forms, Ann. of Math. (2), 150 (1999), 329–352. doi: 10.2307/121105.

[3]

A. Borel, "Automorphic Forms on SL2(ℝ), " Cambridge Tracts in Mathematics, 130, Cambridge University Press, Cambridge, 1997. doi: 10.1017/CBO9780511896064.

[4]

A. Bufetov and G. Forni, Limit theorems for horocycle flows, arXiv: 1104.4502.

[5]

D. Bump, "Automorphic Forms and Representations, " Cambridge Studies in Advanced Mathematics, 55, Cambridge University Press, Cambridge, 1997. doi: 10.1017/CBO9780511609572.

[6]

M. Burger, Horocycle flow on geometrically finite surfaces, Duke Math. J., 61 (1990), 779-803. doi: 10.1215/S0012-7094-90-06129-0.

[7]

S. G. Dani, On uniformly distributed orbits of certain horocycle flows, Ergodic Theory Dynam. Systems, 2 (1982), 139-158.

[8]

S. G. Dani and J. Smillie, Uniform distribution of horocycle orbits for Fuchsian groups, Duke Math. J., 51 (1984), 185-194. doi: 10.1215/S0012-7094-84-05110-X.

[9]

M. EinsiedlerG. Margulis and A. Venkatesh, Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces, Invent. Math., 177 (2009), 137-212. doi: 10.1007/s00222-009-0177-7.

[10]

L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Math. J., 119 (2003), 465-526. doi: 10.1215/S0012-7094-03-11932-8.

[11]

L. Flaminio and G. Forni, personal communication, 2003.

[12]

B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2), 175 (2012), 465–540. doi: 10.4007/annals.2012.175.2.2.

[13]

J. L. Hafner, Some Remarks on odd Maass Wave forms (and a correction to "Zeros of L-functions attached to Maass forms" [Math. Z. 190 (1985), no. 1,113–128; MR0793354 (86m:11034)] by Hafner, C. Epstein and P. Sarnak), Math. Z., 196 (1987), 129-132. doi: 10.1007/BF01179274.

[14]

D. A. Hejhal, "The Selberg Trace Formula for PSL(2, ℝ). Vol. 2, " Lecture Notes in Math., 1001, Springer-Verlag, Berlin, 1983.

[15]

H. Iwaniec, "Introduction to the Spectral Theory of Automorphic Forms, " Biblioteca de la Revista Matemática Iberoamericana, Revista Matemática, Iberoamericana, Madrid, 1995.

[16]

A. Kontorovich and H. Oh, Almost prime Pythagorean Triples In Thin Orbits, J. Reine Angew. Math., 667 (2012), 89-131.

[17]

S. Lang, "SL(2, ℝ), " Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975.

[18]

M. Lee and H. Oh, Effective equidistribution of closed horocycles for geometrically finite surfaces, arXiv: 1202.0848.

[19]

J. Lehner, "Discontinuous Groups and Automorphic Functions, " Math. Surveys, No. Ⅷ, American Mathematical Society, Providence, R.I., 1964.

[20]

G. W. Mackey, "The Theory of Unitary Group Representations, " Chicago Lectures in Mathematics, Univ. of Chicago Press, Chicage, Ill.-London, 1976.

[21]

G. A. Margulis, Problems and conjectures in rigidity theory, in "Mathematics: Frontiers and Perspectives, " AMS, Providence, RI, (2000), 161–174.

[22]

F. Maucourant and B. Weiss, Lattice actions on the plane revisited, Geom. Dedicata, 157 (2012), 1-21. doi: 10.1007/s10711-011-9596-x.

[23]

M. V. Melián and D. Pestana, Geodesic excursions into cusps in finite-volume hyperbolic manifolds, Michigan Math. J., 40 (1993), 77-93. doi: 10.1307/mmj/1029004675.

[24]

T. Miyake, "Modular Forms, " Springer-Verlag, Berlin, 1989.

[25]

E. Nelson, Analytic vectors, Ann. of Math. (2), 70 (1959), 572–615. doi: 10.2307/1970331.

[26]

S. J. Patterson, Diophantine approximation in Fuchsian groups, Phil. Trans. Soc. London Ser. A, 282 (1976), 527-563. doi: 10.1098/rsta.1976.0063.

[27]

M. Ratner, The rate of mixing for geodesic and horocycle flows, Ergodic Theory Dynam. Systems, 7 (1987), 267-288. doi: 10.1017/S0143385700004004.

[28]

M. Ratner, Raghunathan's topological conjecture and distributions of unipotent flows, Duke Math. J., 63 (1991), 235-280. doi: 10.1215/S0012-7094-91-06311-8.

[29]

M. Ratner, Raghunathan's conjectures for SL(2, ℝ), Israel J. Math., 80 (1992), 1–31. doi: 10.1007/BF02808152.

[30]

P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math., 34 (1981), 719-739. doi: 10.1002/cpa.3160340602.

[31]

P. Sarnak and A. Ubis, The horocycle flow at prime times, arXiv: 1110.0777.

[32]

H. Shimizu, On discontinuous groups acting on the product of the upper half planes, Ann. Math. (2), 77 (1963), 33–71. doi: 10.2307/1970201.

[33]

A. Strömbergsson, On the uniform equidistribution of long closed horocycles, Duke Math. J., 123 (2004), 507-547. doi: 10.1215/S0012-7094-04-12334-6.

[34]

D. Sullivan, Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math., 149 (1982), 215-237. doi: 10.1007/BF02392354.

[35]

S. L. Velani, Diophantine approximation and Hausdorff dimension in Fuchsian groups, Math. Proc. Cambridge Philos. Soc., 113 (1993), 343-354. doi: 10.1017/S0305004100076015.

[36]

S. L. Velani, Geometrically finite groups, Khintchine-type theorems and Hausdorff dimension, Math. Proc. Cambridge Philos. Soc., 120 (1996), 647-662. doi: 10.1017/S0305004100001626.

[37]

A. Venkatesh, Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math. (2), 172 (2010), 989–1094. doi: 10.4007/annals.2010.172.989.

[38]

N. R. Wallach, "Real Reductive Groups. Ⅰ, Ⅱ, " Academic Press, Inc., Boston, MA, 1988, 1992.

[39]

G. N. Watson, "A Treatise on the Theory of Bessel Functions, " Cambridge Univ. Press, Cambridge, England; The Macmillan Company, New York, 1944.

[1]

Wenyu Pan. Effective equidistribution of circles in the limit sets of Kleinian groups. Journal of Modern Dynamics, 2017, 11: 189-217. doi: 10.3934/jmd.2017009

[2]

Kathryn Dabbs, Michael Kelly, Han Li. Effective equidistribution of translates of maximal horospherical measures in the space of lattices. Journal of Modern Dynamics, 2016, 10: 229-254. doi: 10.3934/jmd.2016.10.229

[3]

Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94.

[4]

Fernando Alcalde Cuesta, Françoise Dal'Bo, Matilde Martínez, Alberto Verjovsky. Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4619-4635. doi: 10.3934/dcds.2016001

[5]

Marcello D'Abbicco. Small data solutions for semilinear wave equations with effective damping. Conference Publications, 2013, 2013 (special) : 183-191. doi: 10.3934/proc.2013.2013.183

[6]

Agnes Lamacz, Ben Schweizer. Effective acoustic properties of a meta-material consisting of small Helmholtz resonators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 815-835. doi: 10.3934/dcdss.2017041

[7]

Fioralba Cakoni, Shari Moskow, Scott Rome. The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions. Inverse Problems & Imaging, 2015, 9 (3) : 725-748. doi: 10.3934/ipi.2015.9.725

[8]

Fioralba Cakoni, Shari Moskow, Scott Rome. Asymptotic expansions of transmission eigenvalues for small perturbations of media with generally signed contrast. Inverse Problems & Imaging, 2018, 12 (4) : 971-992. doi: 10.3934/ipi.2018041

[9]

Fernando Alcalde Cuesta, Françoise Dal'Bo, Matilde Martínez, Alberto Verjovsky. Corrigendum to "Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology". Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4585-4586. doi: 10.3934/dcds.2017196

[10]

Anna Marciniak-Czochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1065-1077. doi: 10.3934/dcdss.2014.7.1065

[11]

Benjamin Dozier. Equidistribution of saddle connections on translation surfaces. Journal of Modern Dynamics, 2019, 14: 87-120. doi: 10.3934/jmd.2019004

[12]

Amadeu Delshams, Pere Gutiérrez, Tere M. Seara. Exponentially small splitting for whiskered tori in Hamiltonian systems: flow-box coordinates and upper bounds. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 785-826. doi: 10.3934/dcds.2004.11.785

[13]

Giovanni Forni, Corinna Ulcigrai. Time-changes of horocycle flows. Journal of Modern Dynamics, 2012, 6 (2) : 251-273. doi: 10.3934/jmd.2012.6.251

[14]

Rafael Tiedra De Aldecoa. Spectral analysis of time changes of horocycle flows. Journal of Modern Dynamics, 2012, 6 (2) : 275-285. doi: 10.3934/jmd.2012.6.275

[15]

Wenyu Pan. Joining measures for horocycle flows on abelian covers. Journal of Modern Dynamics, 2018, 12: 17-54. doi: 10.3934/jmd.2018003

[16]

Carlos A. Berenstein and Alain Yger. Residues and effective Nullstellensatz. Electronic Research Announcements, 1996, 2: 82-91.

[17]

Manuel V. C. Vieira. Derivatives of eigenvalues and Jordan frames. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 115-126. doi: 10.3934/naco.2016003

[18]

Fioralba Cakoni, Drossos Gintides. New results on transmission eigenvalues. Inverse Problems & Imaging, 2010, 4 (1) : 39-48. doi: 10.3934/ipi.2010.4.39

[19]

Andreas Kirsch. On the existence of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (2) : 155-172. doi: 10.3934/ipi.2009.3.155

[20]

Zhi Lin, Katarína Boďová, Charles R. Doering. Models & measures of mixing & effective diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 259-274. doi: 10.3934/dcds.2010.28.259

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]