\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Growth of periodic orbits and generalized diagonals for typical triangular billiards

Abstract / Introduction Related Papers Cited by
  • We prove that for any $\epsilon>0$ the growth rate $P_n$ of generalized diagonals or periodic orbits of a typical (in the Lebesgue measure sense) triangular billiard satisfies: $P_n < Ce^{n^{\sqrt{3}-1+\epsilon}}$. This provides an explicit subexponential estimate on the triangular billiard complexity and answers a long-standing open question for typical triangles. This also makes progress towards a solution of Problem 3 in Katok's list of "Five most resistant problems in dynamics". The proof uses essentially new geometric ideas and does not rely on the rational approximations.
    Mathematics Subject Classification: Primary: 37C10; Secondary: 37C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Cassaigne, P. Hubert and S. Troubetzkoy, Complexity and growth for polygonal billiards, Ann. Inst. Fourier (Grenoble), 52 (2002), 835-847.

    [2]

    E. Gutkin and M. Rams, Growth rates for geometric complexities and counting functions in polygonal billiards, Ergodic Theory Dynam. Systems, 29 (2009), 1163-1183.doi: 10.1017/S0143385708080620.

    [3]

    E. Gutkin and S. Tabachnikov, Complexity of piecewise convex transformations in two dimensions, with applications to polygonal billiards on surfaces of constant curvature, (English summary) Mosc. Math. J., 6 (2006), 673-701, 772.

    [4]

    E. Gutkin and S. TroubetzkoyDirectional flows and strong recurrence for polygonal billiards, Proceedings of the International Congress of Dynamical Systems, Montevideo, Uruguay.

    [5]

    B. Hasselblatt, ed., "Dynamics, Ergodic Theory, and Geometry," Mathematical Sciences Research Institute Publications, 54, Cambridge University Press, Cambridge, 2007.doi: 10.1017/CBO9780511755187.

    [6]

    V. Kaloshin and I. Rodnianski, Diophantine properties of elements of SO(3), Geom. Funct. Anal., 11 (2001), 953-970.doi: 10.1007/s00039-001-8222-8.

    [7]

    A. KatokFive most resistant problems in dynamics. Available from: http://www.math.psu.edu/katok_a/pub/5problems-expanded.pdf.

    [8]

    A. Katok, The growth rate for the number of singular and periodic orbits for a polygonal billiard, Comm. Math. Phys., 111 (1987), 151-160.doi: 10.1007/BF01239021.

    [9]

    A. Katok and A. Zemlyakov, Topological transitivity of billiards in polygons, Mat. Zametki, 18 (1975), 291-300.

    [10]

    H. Masur, The growth rate of trajectories of a quadratic differential, Ergod. Th. Dyn. Sys., 10 (1990), 151-176.doi: 10.1017/S0143385700005459.

    [11]

    H. Masur, Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, in "Holomorphic Functions and Moduli, Vol. 1" (ed. D. Drasin) (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., 10, Springer, New York, 1988.doi: 10.1007/978-1-4613-9602-4_20.

    [12]

    D. ScheglovLower bounds on directional complexity for irrational triangle billiards, preprint.

    [13]

    S. Troubetzkoy, Complexity lower bounds for polygonal billiards, Chaos, 8 (1998), 242-244.doi: 10.1063/1.166301.

    [14]

    Y. Vorobets, Ergodicity of billiards in polygons, Mat. Sb., 188 (1997), 65-112.doi: 10.1070/SM1997v188n03ABEH000211.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(96) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return