\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Winning games for bounded geodesics in moduli spaces of quadratic differentials

Abstract / Introduction Related Papers Cited by
  • We prove that the set of bounded geodesics in Teichmüller space is a winning set for Schmidt's game. This is a notion of largeness in a metric space that can apply to measure $0$ and meager sets. We prove analogous closely related results on any Riemann surface, in any stratum of quadratic differentials, on any Teichmüller disk and for intervals exchanges with any fixed irreducible permutation.
    Mathematics Subject Classification: Primary: 30F30; Secondary: 32G15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Boshernitzan, A condition for minimal interval exchange maps to be uniquely ergodic, Duke Math. J., 52 (1985), 723-752.doi: 10.1215/S0012-7094-85-05238-X.

    [2]

    M. Boshernitzan, Rank two interval exchange transformations, Ergod. Theory Dynam. Systems, 8 (1988), 379-394.doi: 10.1017/S0143385700004521.

    [3]

    S. G. Dani, Bounded orbits of flows on homogeneous spaces, Comment. Math. Helv., 61 (1986), 636-660.doi: 10.1007/BF02621936.

    [4]

    A. Fathi, F. Laudenbach and V. Poenaru, Travaux de Thurston sur les surfaces, Asterisque, No. 66-67, Société Mathématique de France, Paris, 1979.

    [5]

    J. Hubbard and H. Masur, Quadratic differentials and foliations, Acta. Math., 142 (1979), 221-274.doi: 10.1007/BF02395062.

    [6]

    S. Kerckhoff, H. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Annals of Math. (2), 124 (1986), 293-311.doi: 10.2307/1971280.

    [7]

    D. Y. Kleinbock and G. A. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, in Sinaĭ's Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, 171, Amer. Math. Soc., Providence, RI, 1996, 141-172.

    [8]

    D. Kleinbock and B. Weiss, Bounded geodesics in moduli space, Int. Math. Res. Not., 2004 (2004), 1551-1560.doi: 10.1155/S1073792804133412.

    [9]

    D. Kleinbock and B. Weiss, Modified Schmidt games and Diophantine approximation with weights, Advances in Math., 223 (2010), 1276-1298.doi: 10.1016/j.aim.2009.09.018.

    [10]

    C. T. McMullen, Winning sets, quasiconformal maps and Diophantine approximation, Geom. Funct. Anal., 20 (2010), 726-740.doi: 10.1007/s00039-010-0078-3.

    [11]

    C. T. McMullen, Diophantine and ergodic foliations on surfaces, J. Topol., 6 (2013), 349-360.doi: 10.1112/jtopol/jts033.

    [12]

    H. Masur and S. Tabachnikov, Rational billiards and flat structures, in Handbook of Dynamical Systems, Vol. 1A (eds. B. Hasselblatt and A. Katok), North-Holland, Amsterdam, 2002, 1015-1089.doi: 10.1016/S1874-575X(02)80015-7.

    [13]

    Y. Minsky and B. Weiss, Nondivergence of horocyclic flows on moduli space, I. Reine Angew. Math., 552 (2002), 131-177.doi: 10.1515/crll.2002.088.

    [14]

    R. Penner and J. Harer, Combinatorics of Train Tracks, Annals of Math. Studies, {125}, Princeton University Press, Princeton, NJ, 1992.

    [15]

    W. Schmidt, On badly approximable numbers and certain games, Trans. Amer. Math. Soc., 123 (1966), 178-199.doi: 10.1090/S0002-9947-1966-0195595-4.

    [16]

    W. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982), 201-242.doi: 10.2307/1971391.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(69) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return