January  2013, 7(1): 45-74. doi: 10.3934/jmd.2013.7.45

On bounded cocycles of isometries over minimal dynamics

1. 

Departamento deMatemática, UNAB, República 220, 2 piso, Santiago, Chile

2. 

Departamento de Matemática y C.C., USACH, Alameda 3363, Estación Central, Santiago, Chile

3. 

Facultad deMatemáticas, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile

Received  June 2012 Revised  January 2013 Published  May 2013

We show the following geometric generalization of a classical theorem of W. H. Gottschalk and G. A. Hedlund: a skew action induced by a cocycle of (affine) isometries of a Hilbert space over a minimal dynamical system has a continuous invariant section if and only if the cocycle is bounded. Equivalently, the associated twisted cohomological equation has a continuous solution if and only if the cocycle is bounded. We interpret this as a version of the Bruhat-Tits Center Lemma in the space of continuous functions. Our result also holds when the fiber is a proper CAT(0) space. One of the applications concerns matrix cocycles. Using the action of $\mathrm{GL} (n,\mathbb{R})$ on the (nonpositively curved) space of positively definite matrices, we show that every bounded linear cocycle over a minimal dynamical system is cohomologous to a cocycle taking values in the orthogonal group.
Citation: Daniel Coronel, Andrés Navas, Mario Ponce. On bounded cocycles of isometries over minimal dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 45-74. doi: 10.3934/jmd.2013.7.45
References:
[1]

G. Atkinson, A class of transitive cylinder transformations,, J. London Math. Soc. (2), 17 (1978), 263.  doi: 10.1112/jlms/s2-17.2.263.  Google Scholar

[2]

U. Bader, T. Gelander and N. Monod, A fixed point theorem for $L^1$ spaces,, Inventiones Mathematicae, 189 (2012), 143.  doi: 10.1007/s00222-011-0363-2.  Google Scholar

[3]

U. Bader, A. Furman, T. Gelander and N. Monod, Property (T) and rigidity for actions on Banach spaces,, Acta Math., 198 (2007), 57.  doi: 10.1007/s11511-007-0013-0.  Google Scholar

[4]

R. Baire, "Leçons sur les Fonctions Discontinues,", Les Grands Classiques Gauthier-Villars, (1995).   Google Scholar

[5]

A. Ballmann, "Lectures on Spaces of Nonpositive Curvature,", DMV Seminar, 25 (1995).  doi: 10.1007/978-3-0348-9240-7.  Google Scholar

[6]

S. Banach, "Théorie des Opérations Linéaires,", Monografie Matematyczne, 1 (1932).   Google Scholar

[7]

M. R. Bridson and A. Haefliger, "Metric Spaces of Non-Positive Curvature,", Grundlehren der Mathematischen Wissenschaften, 319 (1999).   Google Scholar

[8]

F. Bruhat and J. Tits, Groupes réductifs sur un corps local,, Inst. Hautes Études Sci. Publ. Math., 41 (1972), 5.   Google Scholar

[9]

D. Coronel, A. Navas and M. Ponce, On the dynamics of non-reducible cylindrical vortices,, J. Lond. Math. Soc. (2), 85 (2012), 789.  doi: 10.1112/jlms/jdr068.  Google Scholar

[10]

W. H. Gottschalk and G. A. Hedlund, "Topological Dynamics,", American Mathematical Society Colloquium Publications, (1955).   Google Scholar

[11]

M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations,, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5.   Google Scholar

[12]

M. Jerison, The space of bounded maps into a Banach space,, Annals of Math. (2), 52 (1950), 309.  doi: 10.2307/1969472.  Google Scholar

[13]

V. Kaimanovich, Double ergodicity of the Poisson boundary and applications to bounded cohomology,, Geom. and Functional Analysis (GAFA), 13 (2003), 852.  doi: 10.1007/s00039-003-0433-8.  Google Scholar

[14]

B. Kalinin, Livšic theorem for matrix cocycles,, Annals of Math. (2), 173 (2011), 1025.  doi: 10.4007/annals.2011.173.2.11.  Google Scholar

[15]

B. Kalinin and V. Sadovskaya, Linear cocycles over hyperbolic systems and criteria of conformality,, J. Mod. Dyn., 4 (2010), 419.  doi: 10.3934/jmd.2010.4.419.  Google Scholar

[16]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Encyclopedia of Mathematics and its Applications, 54 (1995).   Google Scholar

[17]

A. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory,, in collaboration with E. A. Robinson, 69 (2001), 107.   Google Scholar

[18]

I. Kornfeld and M. Lin, Coboundaries of irreducible Markov operators on $C(K)$,, Israel J. of Mathematics, 97 (1997), 189.  doi: 10.1007/BF02774036.  Google Scholar

[19]

S. Lang, "Fundamentals of Differential Geometry,", Graduate Texts in Mathematics, 191 (1999).  doi: 10.1007/978-1-4612-0541-8.  Google Scholar

[20]

V. Markovic, Quasisymmetric groups,, J. Amer. Math. Soc., 19 (2006), 673.  doi: 10.1090/S0894-0347-06-00518-2.  Google Scholar

[21]

S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth-type interval-exchange maps,, J. Amer. Math. Soc., 18 (2005), 823.  doi: 10.1090/S0894-0347-05-00490-X.  Google Scholar

[22]

J. Moulin Ollagnier and D. Pinchon, A note about Hedlund's theorem,, in, (1977), 311.   Google Scholar

[23]

R. McCutcheon, The Gottschalk-Hedlund Theorem,, Am. Math. Monthly, 106 (1999), 670.  doi: 10.2307/2589497.  Google Scholar

[24]

I. Namioka and E. Asplund, A geometric proof of Ryll-Nardzewski's fixed point theorem,, Bull. Amer. Math. Soc., 73 (1967), 443.  doi: 10.1090/S0002-9904-1967-11779-8.  Google Scholar

[25]

A. Navas, Three remarks on one-dimensional bi-Lipschitz conjugacies,, unpublished note, ().   Google Scholar

[26]

A. Navas, "Groups of Circle Diffeomorphisms,", Chicago Lectures in Mathematics, (2011).   Google Scholar

[27]

J. C. Oxtoby, "Measure and Category. A Survey of the Analogies Between Topological and Measure Spaces,", Second edition, 2 (1980).   Google Scholar

[28]

M. Ponce, Local dynamics for fibred holomorphic transformations,, Nonlinearity, 20 (2007), 2939.  doi: 10.1088/0951-7715/20/12/011.  Google Scholar

[29]

J. Pöschel, On elliptic lower-dimensional tori in Hamiltonian systems,, Math. Z., 202 (1989), 559.  doi: 10.1007/BF01221590.  Google Scholar

[30]

A. Quas, Rigidity of continuous coboundaries,, Bull. London Math. Soc., 29 (1997), 595.  doi: 10.1112/S0024609396002810.  Google Scholar

[31]

D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions,, in, 97 (1981), 465.   Google Scholar

[32]

P. Tukia, On quasiconformal groups,, Journal d'Analyse Math., 46 (1986), 318.  doi: 10.1007/BF02796595.  Google Scholar

[33]

P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982).   Google Scholar

[34]

J.-C. Yoccoz, Some questions and remarks about $SL(2,\mathbbR)$ cocycles,, in, (2004), 447.   Google Scholar

show all references

References:
[1]

G. Atkinson, A class of transitive cylinder transformations,, J. London Math. Soc. (2), 17 (1978), 263.  doi: 10.1112/jlms/s2-17.2.263.  Google Scholar

[2]

U. Bader, T. Gelander and N. Monod, A fixed point theorem for $L^1$ spaces,, Inventiones Mathematicae, 189 (2012), 143.  doi: 10.1007/s00222-011-0363-2.  Google Scholar

[3]

U. Bader, A. Furman, T. Gelander and N. Monod, Property (T) and rigidity for actions on Banach spaces,, Acta Math., 198 (2007), 57.  doi: 10.1007/s11511-007-0013-0.  Google Scholar

[4]

R. Baire, "Leçons sur les Fonctions Discontinues,", Les Grands Classiques Gauthier-Villars, (1995).   Google Scholar

[5]

A. Ballmann, "Lectures on Spaces of Nonpositive Curvature,", DMV Seminar, 25 (1995).  doi: 10.1007/978-3-0348-9240-7.  Google Scholar

[6]

S. Banach, "Théorie des Opérations Linéaires,", Monografie Matematyczne, 1 (1932).   Google Scholar

[7]

M. R. Bridson and A. Haefliger, "Metric Spaces of Non-Positive Curvature,", Grundlehren der Mathematischen Wissenschaften, 319 (1999).   Google Scholar

[8]

F. Bruhat and J. Tits, Groupes réductifs sur un corps local,, Inst. Hautes Études Sci. Publ. Math., 41 (1972), 5.   Google Scholar

[9]

D. Coronel, A. Navas and M. Ponce, On the dynamics of non-reducible cylindrical vortices,, J. Lond. Math. Soc. (2), 85 (2012), 789.  doi: 10.1112/jlms/jdr068.  Google Scholar

[10]

W. H. Gottschalk and G. A. Hedlund, "Topological Dynamics,", American Mathematical Society Colloquium Publications, (1955).   Google Scholar

[11]

M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations,, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5.   Google Scholar

[12]

M. Jerison, The space of bounded maps into a Banach space,, Annals of Math. (2), 52 (1950), 309.  doi: 10.2307/1969472.  Google Scholar

[13]

V. Kaimanovich, Double ergodicity of the Poisson boundary and applications to bounded cohomology,, Geom. and Functional Analysis (GAFA), 13 (2003), 852.  doi: 10.1007/s00039-003-0433-8.  Google Scholar

[14]

B. Kalinin, Livšic theorem for matrix cocycles,, Annals of Math. (2), 173 (2011), 1025.  doi: 10.4007/annals.2011.173.2.11.  Google Scholar

[15]

B. Kalinin and V. Sadovskaya, Linear cocycles over hyperbolic systems and criteria of conformality,, J. Mod. Dyn., 4 (2010), 419.  doi: 10.3934/jmd.2010.4.419.  Google Scholar

[16]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Encyclopedia of Mathematics and its Applications, 54 (1995).   Google Scholar

[17]

A. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory,, in collaboration with E. A. Robinson, 69 (2001), 107.   Google Scholar

[18]

I. Kornfeld and M. Lin, Coboundaries of irreducible Markov operators on $C(K)$,, Israel J. of Mathematics, 97 (1997), 189.  doi: 10.1007/BF02774036.  Google Scholar

[19]

S. Lang, "Fundamentals of Differential Geometry,", Graduate Texts in Mathematics, 191 (1999).  doi: 10.1007/978-1-4612-0541-8.  Google Scholar

[20]

V. Markovic, Quasisymmetric groups,, J. Amer. Math. Soc., 19 (2006), 673.  doi: 10.1090/S0894-0347-06-00518-2.  Google Scholar

[21]

S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth-type interval-exchange maps,, J. Amer. Math. Soc., 18 (2005), 823.  doi: 10.1090/S0894-0347-05-00490-X.  Google Scholar

[22]

J. Moulin Ollagnier and D. Pinchon, A note about Hedlund's theorem,, in, (1977), 311.   Google Scholar

[23]

R. McCutcheon, The Gottschalk-Hedlund Theorem,, Am. Math. Monthly, 106 (1999), 670.  doi: 10.2307/2589497.  Google Scholar

[24]

I. Namioka and E. Asplund, A geometric proof of Ryll-Nardzewski's fixed point theorem,, Bull. Amer. Math. Soc., 73 (1967), 443.  doi: 10.1090/S0002-9904-1967-11779-8.  Google Scholar

[25]

A. Navas, Three remarks on one-dimensional bi-Lipschitz conjugacies,, unpublished note, ().   Google Scholar

[26]

A. Navas, "Groups of Circle Diffeomorphisms,", Chicago Lectures in Mathematics, (2011).   Google Scholar

[27]

J. C. Oxtoby, "Measure and Category. A Survey of the Analogies Between Topological and Measure Spaces,", Second edition, 2 (1980).   Google Scholar

[28]

M. Ponce, Local dynamics for fibred holomorphic transformations,, Nonlinearity, 20 (2007), 2939.  doi: 10.1088/0951-7715/20/12/011.  Google Scholar

[29]

J. Pöschel, On elliptic lower-dimensional tori in Hamiltonian systems,, Math. Z., 202 (1989), 559.  doi: 10.1007/BF01221590.  Google Scholar

[30]

A. Quas, Rigidity of continuous coboundaries,, Bull. London Math. Soc., 29 (1997), 595.  doi: 10.1112/S0024609396002810.  Google Scholar

[31]

D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions,, in, 97 (1981), 465.   Google Scholar

[32]

P. Tukia, On quasiconformal groups,, Journal d'Analyse Math., 46 (1986), 318.  doi: 10.1007/BF02796595.  Google Scholar

[33]

P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982).   Google Scholar

[34]

J.-C. Yoccoz, Some questions and remarks about $SL(2,\mathbbR)$ cocycles,, in, (2004), 447.   Google Scholar

[1]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[2]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[3]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[4]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[10]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[11]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[15]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[18]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[19]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[20]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]