July  2013, 7(3): 461-488. doi: 10.3934/jmd.2013.7.461

Ergodic properties of $k$-free integers in number fields

1. 

Department of Mathematics, Altgeld Hall, 1409 W Green Street, Urbana, IL 61801, United States

2. 

School of Mathematics, University Walk, Bristol, BS8 1TW, United Kingdom

Received  March 2013 Revised  September 2013 Published  December 2013

Let $K/\mathbf{Q}$ be a degree-$d$ extension. Inside the ring of integers $\mathscr O_K$ we define the set of $k$-free integers $\mathscr F_k$ and a natural $\mathscr O_K$-action on the space of binary $\mathscr O_K$-indexed sequences, equipped with an $\mathscr O_K$-invariant probability measure associated to $\mathscr F_k$. We prove that this action is ergodic, has pure point spectrum, and is isomorphic to a $\mathbf Z^d$-action on a compact abelian group. In particular, it is not weakly mixing and has zero measure-theoretical entropy. This work generalizes the work of Cellarosi and Sinai [J. Eur. Math. Soc. (JEMS) 15 (2013), no. 4, 1343--1374] that considered the case $K=\mathbf{Q}$ and $k=2$.
Citation: Francesco Cellarosi, Ilya Vinogradov. Ergodic properties of $k$-free integers in number fields. Journal of Modern Dynamics, 2013, 7 (3) : 461-488. doi: 10.3934/jmd.2013.7.461
References:
[1]

M. Baake, R. V. Moody and P. A. B. Pleasants, Diffraction from visible lattice points and $k$th power free integers,, Discrete Math., 221 (2000), 3.  doi: 10.1016/S0012-365X(99)00384-2.  Google Scholar

[2]

V. Bergelson and A. Gorodnik, Weakly mixing group actions: A brief survey and an example,, in Modern Dynamical Systems and Applications, (2004), 3.   Google Scholar

[3]

F. Cellarosi and Ya. G. Sinai, Ergodic properties of square-free numbers,, J. Eur. Math. Soc. (JEMS), 15 (2013), 1343.  doi: 10.4171/JEMS/394.  Google Scholar

[4]

R. R. Hall, The distribution of squarefree numbers,, J. Reine Angew. Math., 394 (1989), 107.  doi: 10.1515/crll.1989.394.107.  Google Scholar

[5]

P. R. Halmos and J. von Neumann, Operator methods in classical mechanics. II,, Ann. of Math. (2), 43 (1942), 332.  doi: 10.2307/1968872.  Google Scholar

[6]

D. R. Heath-Brown, The square sieve and consecutive square-free numbers,, Math. Ann., 266 (1984), 251.  doi: 10.1007/BF01475576.  Google Scholar

[7]

E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. I. Structure of Topological Groups, Integration Theory, Group Representations,, Second edition, (1979).   Google Scholar

[8]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus,, Second edition, (1991).   Google Scholar

[9]

L. B. Koralov and Y. G. Sinai, Theory of probability and random processes,, Second edition, (2007).   Google Scholar

[10]

J. Liu and P. Sarnak, The Möbius function and distal flows,, preprint., ().   Google Scholar

[11]

G. W. Mackey, Ergodic transformation groups with a pure point spectrum,, Illinois J. Math., 8 (1964), 593.   Google Scholar

[12]

L. Mirsky, Arithmetical pattern problems relating to divisibility by $r$th powers,, Proc. London Math. Soc. (2), 50 (1949), 497.   Google Scholar

[13]

W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers,, Third edition, (2004).   Google Scholar

[14]

J. Neukirch, Algebraic Number Theory,, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1999).   Google Scholar

[15]

R. Peckner, Uniqueness of the measure of maximal entropy for the squarefree flow,, preprint, (2012).   Google Scholar

[16]

P. A. B. Pleasants and C. Huck, Entropy and diffraction of the $k$-free points in $n$-dimensional lattices,, Discrete Comput. Geom., 50 (2013), 39.  doi: 10.1007/s00454-013-9516-y.  Google Scholar

[17]

V. A. Rokhlin, On the problem of the classification of automorphisms of Lebesgue spaces,, Doklady Akad. Nauk SSSR (N. S.), 58 (1947), 189.   Google Scholar

[18]

V. A. Rokhlin, Unitary rings,, Doklady Akad. Nauk SSSR (N. S.), 59 (1948), 643.   Google Scholar

[19]

P. Sarnak, Three lectures on the Möbius function randomness and dynamics (Lecture 1)., Available at: , ().   Google Scholar

[20]

K. Schmidt, Dynamical Systems of Algebraic Origin,, [2011 reprint of the 1995 original] [MR1345152], (1995).   Google Scholar

[21]

K. M. Tsang, The distribution of $r$-tuples of squarefree numbers,, Mathematika, 32 (1985), 265.  doi: 10.1112/S0025579300011049.  Google Scholar

[22]

J. von Neumann, Zur Operatorenmethode in der klassischen Mechanik,, Ann. of Math. (2), 33 (1932), 587.  doi: 10.2307/1968537.  Google Scholar

[23]

R. J. Zimmer, Ergodic actions with generalized discrete spectrum,, Illinois J. Math., 20 (1976), 555.   Google Scholar

show all references

References:
[1]

M. Baake, R. V. Moody and P. A. B. Pleasants, Diffraction from visible lattice points and $k$th power free integers,, Discrete Math., 221 (2000), 3.  doi: 10.1016/S0012-365X(99)00384-2.  Google Scholar

[2]

V. Bergelson and A. Gorodnik, Weakly mixing group actions: A brief survey and an example,, in Modern Dynamical Systems and Applications, (2004), 3.   Google Scholar

[3]

F. Cellarosi and Ya. G. Sinai, Ergodic properties of square-free numbers,, J. Eur. Math. Soc. (JEMS), 15 (2013), 1343.  doi: 10.4171/JEMS/394.  Google Scholar

[4]

R. R. Hall, The distribution of squarefree numbers,, J. Reine Angew. Math., 394 (1989), 107.  doi: 10.1515/crll.1989.394.107.  Google Scholar

[5]

P. R. Halmos and J. von Neumann, Operator methods in classical mechanics. II,, Ann. of Math. (2), 43 (1942), 332.  doi: 10.2307/1968872.  Google Scholar

[6]

D. R. Heath-Brown, The square sieve and consecutive square-free numbers,, Math. Ann., 266 (1984), 251.  doi: 10.1007/BF01475576.  Google Scholar

[7]

E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. I. Structure of Topological Groups, Integration Theory, Group Representations,, Second edition, (1979).   Google Scholar

[8]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus,, Second edition, (1991).   Google Scholar

[9]

L. B. Koralov and Y. G. Sinai, Theory of probability and random processes,, Second edition, (2007).   Google Scholar

[10]

J. Liu and P. Sarnak, The Möbius function and distal flows,, preprint., ().   Google Scholar

[11]

G. W. Mackey, Ergodic transformation groups with a pure point spectrum,, Illinois J. Math., 8 (1964), 593.   Google Scholar

[12]

L. Mirsky, Arithmetical pattern problems relating to divisibility by $r$th powers,, Proc. London Math. Soc. (2), 50 (1949), 497.   Google Scholar

[13]

W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers,, Third edition, (2004).   Google Scholar

[14]

J. Neukirch, Algebraic Number Theory,, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1999).   Google Scholar

[15]

R. Peckner, Uniqueness of the measure of maximal entropy for the squarefree flow,, preprint, (2012).   Google Scholar

[16]

P. A. B. Pleasants and C. Huck, Entropy and diffraction of the $k$-free points in $n$-dimensional lattices,, Discrete Comput. Geom., 50 (2013), 39.  doi: 10.1007/s00454-013-9516-y.  Google Scholar

[17]

V. A. Rokhlin, On the problem of the classification of automorphisms of Lebesgue spaces,, Doklady Akad. Nauk SSSR (N. S.), 58 (1947), 189.   Google Scholar

[18]

V. A. Rokhlin, Unitary rings,, Doklady Akad. Nauk SSSR (N. S.), 59 (1948), 643.   Google Scholar

[19]

P. Sarnak, Three lectures on the Möbius function randomness and dynamics (Lecture 1)., Available at: , ().   Google Scholar

[20]

K. Schmidt, Dynamical Systems of Algebraic Origin,, [2011 reprint of the 1995 original] [MR1345152], (1995).   Google Scholar

[21]

K. M. Tsang, The distribution of $r$-tuples of squarefree numbers,, Mathematika, 32 (1985), 265.  doi: 10.1112/S0025579300011049.  Google Scholar

[22]

J. von Neumann, Zur Operatorenmethode in der klassischen Mechanik,, Ann. of Math. (2), 33 (1932), 587.  doi: 10.2307/1968537.  Google Scholar

[23]

R. J. Zimmer, Ergodic actions with generalized discrete spectrum,, Illinois J. Math., 20 (1976), 555.   Google Scholar

[1]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[2]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[3]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[4]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[5]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[7]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[8]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[9]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]