October  2013, 7(4): 565-604. doi: 10.3934/jmd.2013.7.565

Codimension-1 partially hyperbolic diffeomorphisms with a uniformly compact center foliation

1. 

Institut de Mathématiques de Bourgogne CNRS - URM 5584 Université de Bourgogne Dijon 21004, France

Received  March 2013 Revised  November 2013 Published  March 2014

We consider a partially hyperbolic $C^1$-diffeomorphism $f\colon M \rightarrow M$ with a uniformly compact $f$-invariant center foliation $\mathcal{F}^c$. We show that if the unstable bundle is one-dimensional and oriented, then the holonomy of the center foliation vanishes everywhere, the quotient space $M/\mathcal{F}^c$ of the center foliation is a torus and $f$ induces a hyperbolic automorphism on it, in particular, $f$ is centrally transitive.
    We actually obtain further interesting results without restrictions on the unstable, stable and center dimension: we prove a kind of spectral decomposition for the chain recurrent set of the quotient dynamics, and we establish the existence of a holonomy-invariant family of measures on the unstable leaves (Margulis measure).
Citation: Doris Bohnet. Codimension-1 partially hyperbolic diffeomorphisms with a uniformly compact center foliation. Journal of Modern Dynamics, 2013, 7 (4) : 565-604. doi: 10.3934/jmd.2013.7.565
References:
[1]

D. Bohnet and C. Bonatti, Partially hyperbolic diffeomorphism with uniformly compact center foliation: The quotient dynamics,, , (2012).   Google Scholar

[2]

R. H. Bing, A homeomorphism between the 3-sphere and the sum of two solid horned spheres,, Ann. of Math. (2), 56 (1952), 354.  doi: 10.2307/1969804.  Google Scholar

[3]

S. Bochner, Compact groups of differentiable transformations,, Ann. of Math. (2), 46 (1945), 372.  doi: 10.2307/1969157.  Google Scholar

[4]

D. Bohnet, Partially Hyperbolic Diffeomorphisms with a Compact Center Foliation with Finite Holonomy,, Ph.D thesis, (2011).   Google Scholar

[5]

M. I. Brin and Ja. B. Pesin, Partially hyperbolic dynamical systems,, Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170.   Google Scholar

[6]

L. E. J. Brouwer, Über die periodischen Transformationen der Kugel,, Mathematische Annalen, 80 (1919), 39.  doi: 10.1007/BF01463233.  Google Scholar

[7]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds,, Topology, 44 (2005), 475.  doi: 10.1016/j.top.2004.10.009.  Google Scholar

[8]

P. Carrasco, Compact Dynamical Foliations,, Ph.D thesis, (2011).   Google Scholar

[9]

A. Candel and L. Conlon, Foliations. I,, Graduate Studies in Mathematics, (2000).   Google Scholar

[10]

H. Colman and S. Hurder, Ls-category of compact Hausdorff foliations,, Trans. Amer. Math. Soc., 356 (2004), 1463.  doi: 10.1090/S0002-9947-03-03459-7.  Google Scholar

[11]

A. Constantin and B. Kolev, The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere,, Enseign. Math. (2), 40 (1994), 193.   Google Scholar

[12]

C. Conley, Isolated invariant sets and the Morse index,, CBMS Regional Conference Series in Mathematics, (1978).   Google Scholar

[13]

S. Eilenberg, Sur les transformations périodiques de la surface de sphère,, Fund. Math., 22 (1934), 28.   Google Scholar

[14]

D. B. A. Epstein, K. Millet and D. Tischler, Leaves without holonomy,, J. London Math. Soc. (2), 16 (1977), 548.   Google Scholar

[15]

D. B. A. Epstein, Periodic flows on three-manifolds,, Ann. of Math. (2), 95 (1972), 66.  doi: 10.2307/1970854.  Google Scholar

[16]

D. B. A. Epstein, Foliations with all leaves compact,, Ann. Inst. Fourier (Grenoble), 26 (1976), 265.  doi: 10.5802/aif.607.  Google Scholar

[17]

D. B. A. Epstein and E. Vogt, A counterexample to the periodic orbit conjecture in codimension 3,, Ann. of Math. (2), 108 (1978), 539.  doi: 10.2307/1971187.  Google Scholar

[18]

J. Franks, Anosov diffeomorphisms,, in 1970 Global Analysis (Proceedings of Symposia in Pure Mathematics, (1968), 61.   Google Scholar

[19]

A. Gogolev, Partially hyperbolic diffeomorphisms with compact center foliations,, J. Mod. Dyn., 5 (2011), 747.  doi: 10.3934/jmd.2011.5.747.  Google Scholar

[20]

G. Hector, Feuilletages en cylindres,, in Geometry and Topology (Proc. III Latin Amer. School of Math., (1976), 252.   Google Scholar

[21]

K. Hiraide, A simple proof of the Franks-Newhouse theorem on codimension-one Anosov diffeomorphisms,, Ergodic Theory Dynam. Systems, 21 (2001), 801.  doi: 10.1017/S0143385701001390.  Google Scholar

[22]

B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).   Google Scholar

[23]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant manifolds,, Bull. Amer. Math. Soc., 76 (1970), 1015.  doi: 10.1090/S0002-9904-1970-12537-X.  Google Scholar

[24]

F. Rodriguez Hertz, M. A. Rodriguez-Hertz and R. Ures, A non-dynamically coherent example in 3-torus,, preprint, (2010).   Google Scholar

[25]

J. Lewowicz, Expansive homeomorphisms of surfaces,, Bol. Soc. Brasil. Math. (N.S.), 20 (1989), 113.  doi: 10.1007/BF02585472.  Google Scholar

[26]

G. A. Margulis, Certain measures that are connected with u-flows on compact manifolds,, Functional Anal. Appl., 4 (1970), 55.   Google Scholar

[27]

K. C. Millett, Compact foliations,, in Differential Topology and Geometry (Proc. Colloq., (1974), 277.   Google Scholar

[28]

S. E. Newhouse, On codimension one Anosov diffeomorphisms,, Amer. J. Math., 92 (1970), 761.  doi: 10.2307/2373372.  Google Scholar

[29]

J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity,, Ann. of Math. (2), 42 (1941), 874.  doi: 10.2307/1968772.  Google Scholar

[30]

R. Potrie and A. Hammerlindl, Classification of partially hyperbolic diffeomorphisms in 3-manifolds with solvable fundamental group,, , (2013).   Google Scholar

[31]

C. Pugh and M. Shub, Ergodicity of Anosov actions,, Invent. Math., 15 (1972), 1.  doi: 10.1007/BF01418639.  Google Scholar

[32]

G. Reeb, Sur Certaines Propriétés Topologiques des Variétés Feuilletées,, Publ. Inst. Math. Univ. Strasbourg 11, (1183), 5.   Google Scholar

[33]

Walter Rudin, Real and Complex Analysis,, Third edition, (1987).   Google Scholar

[34]

D. Sullivan, A counterexample to the periodic orbit conjecture,, Inst. Hautes Études Sci. Publ. Math., 46 (1976), 5.   Google Scholar

[35]

D. Sullivan, A new flow,, Bull. Amer. Math. Sco., 82 (1976), 331.  doi: 10.1090/S0002-9904-1976-14047-5.  Google Scholar

[36]

J. Vieitez, A 3D-manifold with a uniform local product structure is T3,, Publ. Mat. Urug., 8 (1999), 47.   Google Scholar

[37]

B. von Kerékjártó, Über Transformationen des ebenen Kreisringes,, Mathematische Annalen, 80 (1919), 33.   Google Scholar

[38]

A. Wilkinson, Stable ergodicity of the time-one map of a geodesic flow,, Ergodic Theory Dynam. Systems, 18 (1998), 1545.  doi: 10.1017/S0143385798117984.  Google Scholar

show all references

References:
[1]

D. Bohnet and C. Bonatti, Partially hyperbolic diffeomorphism with uniformly compact center foliation: The quotient dynamics,, , (2012).   Google Scholar

[2]

R. H. Bing, A homeomorphism between the 3-sphere and the sum of two solid horned spheres,, Ann. of Math. (2), 56 (1952), 354.  doi: 10.2307/1969804.  Google Scholar

[3]

S. Bochner, Compact groups of differentiable transformations,, Ann. of Math. (2), 46 (1945), 372.  doi: 10.2307/1969157.  Google Scholar

[4]

D. Bohnet, Partially Hyperbolic Diffeomorphisms with a Compact Center Foliation with Finite Holonomy,, Ph.D thesis, (2011).   Google Scholar

[5]

M. I. Brin and Ja. B. Pesin, Partially hyperbolic dynamical systems,, Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170.   Google Scholar

[6]

L. E. J. Brouwer, Über die periodischen Transformationen der Kugel,, Mathematische Annalen, 80 (1919), 39.  doi: 10.1007/BF01463233.  Google Scholar

[7]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds,, Topology, 44 (2005), 475.  doi: 10.1016/j.top.2004.10.009.  Google Scholar

[8]

P. Carrasco, Compact Dynamical Foliations,, Ph.D thesis, (2011).   Google Scholar

[9]

A. Candel and L. Conlon, Foliations. I,, Graduate Studies in Mathematics, (2000).   Google Scholar

[10]

H. Colman and S. Hurder, Ls-category of compact Hausdorff foliations,, Trans. Amer. Math. Soc., 356 (2004), 1463.  doi: 10.1090/S0002-9947-03-03459-7.  Google Scholar

[11]

A. Constantin and B. Kolev, The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere,, Enseign. Math. (2), 40 (1994), 193.   Google Scholar

[12]

C. Conley, Isolated invariant sets and the Morse index,, CBMS Regional Conference Series in Mathematics, (1978).   Google Scholar

[13]

S. Eilenberg, Sur les transformations périodiques de la surface de sphère,, Fund. Math., 22 (1934), 28.   Google Scholar

[14]

D. B. A. Epstein, K. Millet and D. Tischler, Leaves without holonomy,, J. London Math. Soc. (2), 16 (1977), 548.   Google Scholar

[15]

D. B. A. Epstein, Periodic flows on three-manifolds,, Ann. of Math. (2), 95 (1972), 66.  doi: 10.2307/1970854.  Google Scholar

[16]

D. B. A. Epstein, Foliations with all leaves compact,, Ann. Inst. Fourier (Grenoble), 26 (1976), 265.  doi: 10.5802/aif.607.  Google Scholar

[17]

D. B. A. Epstein and E. Vogt, A counterexample to the periodic orbit conjecture in codimension 3,, Ann. of Math. (2), 108 (1978), 539.  doi: 10.2307/1971187.  Google Scholar

[18]

J. Franks, Anosov diffeomorphisms,, in 1970 Global Analysis (Proceedings of Symposia in Pure Mathematics, (1968), 61.   Google Scholar

[19]

A. Gogolev, Partially hyperbolic diffeomorphisms with compact center foliations,, J. Mod. Dyn., 5 (2011), 747.  doi: 10.3934/jmd.2011.5.747.  Google Scholar

[20]

G. Hector, Feuilletages en cylindres,, in Geometry and Topology (Proc. III Latin Amer. School of Math., (1976), 252.   Google Scholar

[21]

K. Hiraide, A simple proof of the Franks-Newhouse theorem on codimension-one Anosov diffeomorphisms,, Ergodic Theory Dynam. Systems, 21 (2001), 801.  doi: 10.1017/S0143385701001390.  Google Scholar

[22]

B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).   Google Scholar

[23]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant manifolds,, Bull. Amer. Math. Soc., 76 (1970), 1015.  doi: 10.1090/S0002-9904-1970-12537-X.  Google Scholar

[24]

F. Rodriguez Hertz, M. A. Rodriguez-Hertz and R. Ures, A non-dynamically coherent example in 3-torus,, preprint, (2010).   Google Scholar

[25]

J. Lewowicz, Expansive homeomorphisms of surfaces,, Bol. Soc. Brasil. Math. (N.S.), 20 (1989), 113.  doi: 10.1007/BF02585472.  Google Scholar

[26]

G. A. Margulis, Certain measures that are connected with u-flows on compact manifolds,, Functional Anal. Appl., 4 (1970), 55.   Google Scholar

[27]

K. C. Millett, Compact foliations,, in Differential Topology and Geometry (Proc. Colloq., (1974), 277.   Google Scholar

[28]

S. E. Newhouse, On codimension one Anosov diffeomorphisms,, Amer. J. Math., 92 (1970), 761.  doi: 10.2307/2373372.  Google Scholar

[29]

J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity,, Ann. of Math. (2), 42 (1941), 874.  doi: 10.2307/1968772.  Google Scholar

[30]

R. Potrie and A. Hammerlindl, Classification of partially hyperbolic diffeomorphisms in 3-manifolds with solvable fundamental group,, , (2013).   Google Scholar

[31]

C. Pugh and M. Shub, Ergodicity of Anosov actions,, Invent. Math., 15 (1972), 1.  doi: 10.1007/BF01418639.  Google Scholar

[32]

G. Reeb, Sur Certaines Propriétés Topologiques des Variétés Feuilletées,, Publ. Inst. Math. Univ. Strasbourg 11, (1183), 5.   Google Scholar

[33]

Walter Rudin, Real and Complex Analysis,, Third edition, (1987).   Google Scholar

[34]

D. Sullivan, A counterexample to the periodic orbit conjecture,, Inst. Hautes Études Sci. Publ. Math., 46 (1976), 5.   Google Scholar

[35]

D. Sullivan, A new flow,, Bull. Amer. Math. Sco., 82 (1976), 331.  doi: 10.1090/S0002-9904-1976-14047-5.  Google Scholar

[36]

J. Vieitez, A 3D-manifold with a uniform local product structure is T3,, Publ. Mat. Urug., 8 (1999), 47.   Google Scholar

[37]

B. von Kerékjártó, Über Transformationen des ebenen Kreisringes,, Mathematische Annalen, 80 (1919), 33.   Google Scholar

[38]

A. Wilkinson, Stable ergodicity of the time-one map of a geodesic flow,, Ergodic Theory Dynam. Systems, 18 (1998), 1545.  doi: 10.1017/S0143385798117984.  Google Scholar

[1]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[2]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[3]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[4]

Hanyu Gu, Hue Chi Lam, Yakov Zinder. Planning rolling stock maintenance: Optimization of train arrival dates at a maintenance center. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020177

[5]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[6]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[7]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[8]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[9]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[11]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[12]

Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056

[13]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[14]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[15]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[16]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[17]

Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126

[18]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[19]

Sugata Gangopadhyay, Constanza Riera, Pantelimon Stănică. Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations. Advances in Mathematics of Communications, 2021, 15 (2) : 241-256. doi: 10.3934/amc.2020056

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]