-
Previous Article
On Omri Sarig's work on the dynamics on surfaces
- JMD Home
- This Issue
-
Next Article
The 2013 Michael Brin Prize in Dynamical Systems
On the work of Sarig on countable Markov chains and thermodynamic formalism (Brin Prize article)
1. | Department of Mathematics, McAllister Building, Pennsylvania State University, University Park, PA 16802 |
References:
[1] |
J. Aaronson and M. Denker, Local limit theorems for Gibbs-Markov maps, Stochastics Dyn., 1 (2001), 193-237.
doi: 10.1142/S0219493701000114. |
[2] |
J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibered systems and parabolic rational maps, Trans. AMS, 337 (1993), 495-548.
doi: 10.1090/S0002-9947-1993-1107025-2. |
[3] |
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Second revised edition, Edited by J.-R. Chazottes, Lect. Notes Math., 470, Springer-Verlag, Berlin, 2008. |
[4] |
J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergod. Th. and Dyn. Syst., 23 (2003), 1383-1400.
doi: 10.1017/S0143385703000087. |
[5] |
V. Cyr and O. Sarig, Spectral gap and transience for Ruelle operators on countable Markov shifts, Comm. Math. Phys., 292 (2009), 637-666.
doi: 10.1007/s00220-009-0891-4. |
[6] |
R. Dobrušin, Description of a random field by means of conditional probabilities and conditions for its regularity, Teor. Veroyatnoistei i Primenenia, 13 (1968), 201-229; English translation in Theory of Prob. and Appl., 13 (1968), 197-223. |
[7] |
R. Dobrušin, The problem of uniqueness of a Gibbsian random field and the problem of phase transitions, Functional Anal. Appl., 2 (1968), 302-312. |
[8] |
M. Gordin, On the Central Limit Theorem for stationary processes, (Russian) Doklady Akademii Nauk SSSR, 188 (1969), 739-741; English translation in Soviet Math. Dokl., 10 (1969), 1174-1176. |
[9] |
B. M. Gurevič, Topological entropy for denumerable Markov chains, Dokl. Acad. Nauk SSSR, 187 (1969), 715-718; English translation in Soviet Math. Dokl., 10 (1969), 911-915. |
[10] |
B. M. Gurevič, Shift entropy and Markov measures in the space of paths of a countable graph, Dokl. Acad. Nauk SSSR, 192 (1970), 963-965; English translation in Soviet Math. Dokl., 11 (1970), 744-747. |
[11] |
B. M. Gurevič, A variational characterization of one-dimensional countable state Gibbs random fields, Z. Wahrsch. Verw. Gebiete, 68 (1984), 205-242.
doi: 10.1007/BF00531778. |
[12] |
B. M. Gurevič and S. V. Savchenko, Thermodynamic formalism for symbolic Markov chainswith a countable number of states, Uspehi. Mat. Nauk, 53 (1998), 3-106; English translation in Russian Math. Surv., 53 (1998), 245-344.
doi: 10.1070/rm1998v053n02ABEH000017. |
[13] |
G. Keller, Equilibrium States in Ergodic Theory, Cambridge University Press, Cambridge, 1998.
doi: 10.1017/CBO9781107359987. |
[14] |
O. Lanford and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Comm. Math. Phys., 13 (1969), 194-215.
doi: 10.1007/BF01645487. |
[15] |
F. Ledrappier, On Omri Sarig's work on the dynamics on surfaces, J. Modern Dynamics, (2014). |
[16] |
R. Mauldin and M. Urbański, Gibbs states on the symbolic space over an infinite alphabet, Israel J. Math., 125 (2001), 93-130.
doi: 10.1007/BF02773377. |
[17] |
W. Parry, Intrinsic Markov chains, Trans. AMS, 112 (1964), 55-66.
doi: 10.1090/S0002-9947-1964-0161372-1. |
[18] |
D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Comm. Math. Phys., 9 (1968), 267-278.
doi: 10.1007/BF01654281. |
[19] |
D. Ruelle, Thermodynamic Formalism. The Mathematical Structures of Equilibrium Statistical Mechanics, 2nd edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511617546. |
[20] |
D. Ruelle, A variational formulation of equilibrium statistical mechanics and the Gibbs state rule, Comm. Math. Phys., 5 (1967), 324-329.
doi: 10.1007/BF01646446. |
[21] |
O. Sarig, Thermodynamic formalism for countable Markov shifts, Ergod. Theory and Dyn. Syst., 19 (1999), 1565-1593.
doi: 10.1017/S0143385799146820. |
[22] |
O. Sarig, Thermodynamic formalism for null recurrent potentials, Israel J. Math., 121 (2001), 285-311.
doi: 10.1007/BF02802508. |
[23] |
O. Sarig, Phase transitions for countable Markov shifts, Comm. Math. Phys., 217 (2001), 555-577.
doi: 10.1007/s002200100367. |
[24] |
O. Sarig, On an example with a non-analytic topological pressure, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 311-315.
doi: 10.1016/S0764-4442(00)00189-0. |
[25] |
O. Sarig, Existence of Gibbs measures for countable Markov shifts, Proc. of AMS, 131 (2003), 1751-1758.
doi: 10.1090/S0002-9939-03-06927-2. |
[26] |
O. Sarig, Thermodynamic Formalism for Countable Markov Shifts, Ergodic Theory Dynam. Systems, 19 (1999), 1565-1593.
doi: 10.1017/S0143385799146820. |
[27] |
O. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Amer. Math. Soc., 26 (2013), 341-426.
doi: 10.1090/S0894-0347-2012-00758-9. |
[28] |
Y. Sinai, Gibbs measures in ergodic theory, Uspehi Mat. Nauk, 27 (1972), 21-64; English translation in Russan Math. Surveys, 27 (1972), 21-69. |
[29] |
Y. Sinai, Construction of Markov partitions, Functional Anal. and Appl., 2 (1968), 245-253.
doi: 10.1007/BF01076126. |
[30] |
D. Vere-Jones, Geometric ergodicity in denumerable Markov chains, Quart. J. Math. Oxford Ser. (2), 13 (1962), 7-28.
doi: 10.1093/qmath/13.1.7. |
[31] |
D. Vere-Jones, Ergodic properties of nonnegative matrices. I, Pac. J. Math., 22 (1967), 361-386.
doi: 10.2140/pjm.1967.22.361. |
[32] |
P. Walter, Ruelle's operator theorem and $g$-measures, Trans. AMS, 214 (1975), 375-387. |
[33] |
P. Walter, Invariant measures and equilibrium states for some mappings which expand distances, Trans. AMS, 236 (1978), 121-153.
doi: 10.1090/S0002-9947-1978-0466493-1. |
[34] |
P. Walter, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. |
[35] |
M. Yuri, Multi-dimensional maps with infinite invariant measures and countable state sofic shifts, Indag. Math. (N. S.), 6 (1995), 355-383.
doi: 10.1016/0019-3577(95)93202-L. |
[36] |
M. Yuri, On the convergence to equilibrium states for certain non-hyperbolic systems, Ergod. Theory and Dyn. Syst., 17 (1997), 977-1000.
doi: 10.1017/S0143385797086240. |
show all references
References:
[1] |
J. Aaronson and M. Denker, Local limit theorems for Gibbs-Markov maps, Stochastics Dyn., 1 (2001), 193-237.
doi: 10.1142/S0219493701000114. |
[2] |
J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibered systems and parabolic rational maps, Trans. AMS, 337 (1993), 495-548.
doi: 10.1090/S0002-9947-1993-1107025-2. |
[3] |
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Second revised edition, Edited by J.-R. Chazottes, Lect. Notes Math., 470, Springer-Verlag, Berlin, 2008. |
[4] |
J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergod. Th. and Dyn. Syst., 23 (2003), 1383-1400.
doi: 10.1017/S0143385703000087. |
[5] |
V. Cyr and O. Sarig, Spectral gap and transience for Ruelle operators on countable Markov shifts, Comm. Math. Phys., 292 (2009), 637-666.
doi: 10.1007/s00220-009-0891-4. |
[6] |
R. Dobrušin, Description of a random field by means of conditional probabilities and conditions for its regularity, Teor. Veroyatnoistei i Primenenia, 13 (1968), 201-229; English translation in Theory of Prob. and Appl., 13 (1968), 197-223. |
[7] |
R. Dobrušin, The problem of uniqueness of a Gibbsian random field and the problem of phase transitions, Functional Anal. Appl., 2 (1968), 302-312. |
[8] |
M. Gordin, On the Central Limit Theorem for stationary processes, (Russian) Doklady Akademii Nauk SSSR, 188 (1969), 739-741; English translation in Soviet Math. Dokl., 10 (1969), 1174-1176. |
[9] |
B. M. Gurevič, Topological entropy for denumerable Markov chains, Dokl. Acad. Nauk SSSR, 187 (1969), 715-718; English translation in Soviet Math. Dokl., 10 (1969), 911-915. |
[10] |
B. M. Gurevič, Shift entropy and Markov measures in the space of paths of a countable graph, Dokl. Acad. Nauk SSSR, 192 (1970), 963-965; English translation in Soviet Math. Dokl., 11 (1970), 744-747. |
[11] |
B. M. Gurevič, A variational characterization of one-dimensional countable state Gibbs random fields, Z. Wahrsch. Verw. Gebiete, 68 (1984), 205-242.
doi: 10.1007/BF00531778. |
[12] |
B. M. Gurevič and S. V. Savchenko, Thermodynamic formalism for symbolic Markov chainswith a countable number of states, Uspehi. Mat. Nauk, 53 (1998), 3-106; English translation in Russian Math. Surv., 53 (1998), 245-344.
doi: 10.1070/rm1998v053n02ABEH000017. |
[13] |
G. Keller, Equilibrium States in Ergodic Theory, Cambridge University Press, Cambridge, 1998.
doi: 10.1017/CBO9781107359987. |
[14] |
O. Lanford and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Comm. Math. Phys., 13 (1969), 194-215.
doi: 10.1007/BF01645487. |
[15] |
F. Ledrappier, On Omri Sarig's work on the dynamics on surfaces, J. Modern Dynamics, (2014). |
[16] |
R. Mauldin and M. Urbański, Gibbs states on the symbolic space over an infinite alphabet, Israel J. Math., 125 (2001), 93-130.
doi: 10.1007/BF02773377. |
[17] |
W. Parry, Intrinsic Markov chains, Trans. AMS, 112 (1964), 55-66.
doi: 10.1090/S0002-9947-1964-0161372-1. |
[18] |
D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Comm. Math. Phys., 9 (1968), 267-278.
doi: 10.1007/BF01654281. |
[19] |
D. Ruelle, Thermodynamic Formalism. The Mathematical Structures of Equilibrium Statistical Mechanics, 2nd edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511617546. |
[20] |
D. Ruelle, A variational formulation of equilibrium statistical mechanics and the Gibbs state rule, Comm. Math. Phys., 5 (1967), 324-329.
doi: 10.1007/BF01646446. |
[21] |
O. Sarig, Thermodynamic formalism for countable Markov shifts, Ergod. Theory and Dyn. Syst., 19 (1999), 1565-1593.
doi: 10.1017/S0143385799146820. |
[22] |
O. Sarig, Thermodynamic formalism for null recurrent potentials, Israel J. Math., 121 (2001), 285-311.
doi: 10.1007/BF02802508. |
[23] |
O. Sarig, Phase transitions for countable Markov shifts, Comm. Math. Phys., 217 (2001), 555-577.
doi: 10.1007/s002200100367. |
[24] |
O. Sarig, On an example with a non-analytic topological pressure, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 311-315.
doi: 10.1016/S0764-4442(00)00189-0. |
[25] |
O. Sarig, Existence of Gibbs measures for countable Markov shifts, Proc. of AMS, 131 (2003), 1751-1758.
doi: 10.1090/S0002-9939-03-06927-2. |
[26] |
O. Sarig, Thermodynamic Formalism for Countable Markov Shifts, Ergodic Theory Dynam. Systems, 19 (1999), 1565-1593.
doi: 10.1017/S0143385799146820. |
[27] |
O. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Amer. Math. Soc., 26 (2013), 341-426.
doi: 10.1090/S0894-0347-2012-00758-9. |
[28] |
Y. Sinai, Gibbs measures in ergodic theory, Uspehi Mat. Nauk, 27 (1972), 21-64; English translation in Russan Math. Surveys, 27 (1972), 21-69. |
[29] |
Y. Sinai, Construction of Markov partitions, Functional Anal. and Appl., 2 (1968), 245-253.
doi: 10.1007/BF01076126. |
[30] |
D. Vere-Jones, Geometric ergodicity in denumerable Markov chains, Quart. J. Math. Oxford Ser. (2), 13 (1962), 7-28.
doi: 10.1093/qmath/13.1.7. |
[31] |
D. Vere-Jones, Ergodic properties of nonnegative matrices. I, Pac. J. Math., 22 (1967), 361-386.
doi: 10.2140/pjm.1967.22.361. |
[32] |
P. Walter, Ruelle's operator theorem and $g$-measures, Trans. AMS, 214 (1975), 375-387. |
[33] |
P. Walter, Invariant measures and equilibrium states for some mappings which expand distances, Trans. AMS, 236 (1978), 121-153.
doi: 10.1090/S0002-9947-1978-0466493-1. |
[34] |
P. Walter, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. |
[35] |
M. Yuri, Multi-dimensional maps with infinite invariant measures and countable state sofic shifts, Indag. Math. (N. S.), 6 (1995), 355-383.
doi: 10.1016/0019-3577(95)93202-L. |
[36] |
M. Yuri, On the convergence to equilibrium states for certain non-hyperbolic systems, Ergod. Theory and Dyn. Syst., 17 (1997), 977-1000.
doi: 10.1017/S0143385797086240. |
[1] |
The Editors. The 2013 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2014, 8 (1) : i-ii. doi: 10.3934/jmd.2014.8.1i |
[2] |
The Editors. The 2011 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2012, 6 (2) : i-ii. doi: 10.3934/jmd.2012.6.2i |
[3] |
The Editors. The 2008 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2008, 2 (3) : i-ii. doi: 10.3934/jmd.2008.2.3i |
[4] |
The Editors. The 2009 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2010, 4 (2) : i-ii. doi: 10.3934/jmd.2010.4.2i |
[5] |
The Editors. The 2015 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2016, 10: 173-174. doi: 10.3934/jmd.2016.10.173 |
[6] |
The Editors. The 2018 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2019, 15: 425-426. doi: 10.3934/jmd.2019025 |
[7] |
The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013 |
[8] |
The Editors. The 2017 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2019, 15: 131-132. doi: 10.3934/jmd.2019015 |
[9] |
The Editors. The 2020 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2022, 18: 101-102. doi: 10.3934/jmd.2022004 |
[10] |
Mikhail Lyubich. Forty years of unimodal dynamics: On the occasion of Artur Avila winning the Brin Prize. Journal of Modern Dynamics, 2012, 6 (2) : 183-203. doi: 10.3934/jmd.2012.6.183 |
[11] |
Giovanni Forni. On the Brin Prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations. Journal of Modern Dynamics, 2012, 6 (2) : 139-182. doi: 10.3934/jmd.2012.6.139 |
[12] |
Stefano Marmi. Some arithmetical aspects of renormalization in Teichmüller dynamics: On the occasion of Corinna Ulcigrai winning the Brin Prize. Journal of Modern Dynamics, 2022, 18: 131-147. doi: 10.3934/jmd.2022006 |
[13] |
François Ledrappier. Erratum: On Omri Sarig's work on the dynamics of surfaces. Journal of Modern Dynamics, 2015, 9: 355-355. doi: 10.3934/jmd.2015.9.355 |
[14] |
François Ledrappier. On Omri Sarig's work on the dynamics on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 15-24. doi: 10.3934/jmd.2014.8.15 |
[15] |
Richard Tapia. My reflections on the Blackwell-Tapia prize. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1669-1672. doi: 10.3934/mbe.2013.10.1669 |
[16] |
Tao Zhang, W. Art Chaovalitwongse, Yue-Jie Zhang, P. M. Pardalos. The hot-rolling batch scheduling method based on the prize collecting vehicle routing problem. Journal of Industrial and Management Optimization, 2009, 5 (4) : 749-765. doi: 10.3934/jimo.2009.5.749 |
[17] |
Jian Sun, Haiyun Sheng, Yuefang Sun, Donglei Du, Xiaoyan Zhang. Approximation algorithm with constant ratio for stochastic prize-collecting Steiner tree problem. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021116 |
2021 Impact Factor: 0.641
Tools
Metrics
Other articles
by authors
[Back to Top]