January  2014, 8(1): 109-132. doi: 10.3934/jmd.2014.8.109

Pseudo-integrable billiards and arithmetic dynamics

1. 

Department of Mathematical Sciences, University of Texas at Dallas, FO 35, 800West Campbell Road, TX 75080 USA, Mathematical Institute SANU, Kneza Mihaila 36, Belgrade, Serbia

2. 

Mathematical Institute SANU, Kneza Mihaila 36, Belgrade, Serbia

Received  September 2013 Published  July 2014

We introduce a new class of billiard systems in the plane, with boundaries formed by finitely many arcs of confocal conics such that they contain some reflex angles. Fundamental dynamical, topological, geometric, and arithmetic properties of such billiards are studied. The novelty, caused by reflex angles on boundary, induces invariant leaves of higher genera and dynamical behavior different from Liouville--Arnold's Theorem. Its analog is derived from the Maier Theorem on measured foliations. The billiard flow generates a measurable foliation defined by a closed 1-form $w$. Using the closed form, a transformation of the given billiard table to a rectangular cylinder is constructed and a trajectory equivalence between corresponding billiards has been established. A local version of Poncelet Theorem is formulated and necessary algebro-geometric conditions for periodicity are presented. It is proved that the dynamics depends on arithmetic of rotation numbers, but not on geometry of a given confocal pencil of conics.
Citation: Vladimir Dragović, Milena Radnović. Pseudo-integrable billiards and arithmetic dynamics. Journal of Modern Dynamics, 2014, 8 (1) : 109-132. doi: 10.3934/jmd.2014.8.109
References:
[1]

V. I. Arnold, Mathematical Methods of Classical Mechanics,, Graduate Texts in Mathematics, (1978).   Google Scholar

[2]

V. I. Arnold, Poly-integrable flows,, (Russian) Algebra i Analiz, 4 (1992), 54.   Google Scholar

[3]

J. S. Athreya, A. Eskin and A. Zorich, Right-angled billiards and volumes of moduli spaces of quadratic differentials on $\mathbb CP^1$,, , (2013).   Google Scholar

[4]

H. J. M. Bos, C. Kers, F. Oort and D. W. Raven, Poncelet's closure theorem,, Expo. Math., 5 (1987), 289.   Google Scholar

[5]

A. Cayley, Note on the porism of the in-and-circumscribed polygon,, Philosophical Magazine, 6 (1853), 99.   Google Scholar

[6]

A. Cayley, Developments on the porism of the in-and-circumscribed polygon,, Philosophical Magazine, 7 (1854), 339.   Google Scholar

[7]

M. Chasles, Géométrie pure. Théorèmes sur les sections coniques confocales,, Ann. Math. Pures Appl. [Ann. Gergonne], 18 (): 269.   Google Scholar

[8]

G. Darboux, Sur les polygones inscrits et circonscrits à l'ellipsoĩde,, Bulletin de la Société Philomathique, 7 (1870), 92.   Google Scholar

[9]

V. Dragović and M. Radnović, Cayley-type conditions for billiards within $k$ quadrics in $\mathbf R^d$,, J. Phys. A, 37 (2004), 1269.  doi: 10.1088/0305-4470/37/4/014.  Google Scholar

[10]

V. Dragović and M. Radnović, A survey of the analytical description of periodic elliptical billiard trajectories,, J. Math. Sci. (N. Y.), 135 (2006), 3244.  doi: 10.1007/s10958-006-0154-2.  Google Scholar

[11]

V. Dragović and M. Radnović, Geometry of integrable billiards and pencils of quadrics,, J. Math. Pures Appl. (9), 85 (2006), 758.  doi: 10.1016/j.matpur.2005.12.002.  Google Scholar

[12]

V. Dragović and M. Radnović, Bifurcations of Liouville tori in elliptical billiards,, Regul. Chaotic Dyn., 14 (2009), 479.  doi: 10.1134/S1560354709040054.  Google Scholar

[13]

V. Dragović and M. Radnović, Poncelet Porisms and Beyond. Integrable Billiards, Hyperelliptic Jacobians and Pencils of Quadrics,, Frontiers in Mathematics, (2011).  doi: 10.1007/978-3-0348-0015-0.  Google Scholar

[14]

J. Fay, Kernel functions, analytic torsion, and moduli spaces,, Mem. Amer. Math. Soc., 96 (1992).  doi: 10.1090/memo/0464.  Google Scholar

[15]

L. Flatto, Poncelet's Theorem,, Chapter 15 by S. Tabachnikov, (2009).   Google Scholar

[16]

C. Jacobi, Fundamenta Nova Theoriae Functiorum Ellipticarum,, 1829., ().   Google Scholar

[17]

C. Jacobi, Gesammelte Werke: Vorlesungen über Dynamic. Supplementband,, Berlin, (1884).   Google Scholar

[18]

J. L. King, Three problems in search of a measure,, Amer. Math. Monthly, 101 (1994), 609.  doi: 10.2307/2974690.  Google Scholar

[19]

V. Kozlov and D. Treshchëv, Billiards,, Amer. Math. Soc., (1991).   Google Scholar

[20]

V. V. Kozlov, Dynamical systems on a torus with multivalued integrals,, (Russian) Tr. Mat. Inst. Steklova, 256 (2007), 201.  doi: 10.1134/S0081543807010105.  Google Scholar

[21]

M. Levi and S. Tabachnikov, The Poncelet grid and billiards in ellipses,, Amer. Math. Monthly, 114 (2007), 895.   Google Scholar

[22]

A. G. Maier, Trajectories on closable orientable surfaces,, (Russian) Rec. Math. [Mat. Sbornik] N.S., 12(54) (1943), 71.   Google Scholar

[23]

H. Masur and S. Tabachnikov, Rational billiards and flat structures,, in Handbook of Dynamical Systems, (2002), 1015.  doi: 10.1016/S1874-575X(02)80015-7.  Google Scholar

[24]

S. P. Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory,, (Russian) Uspekhi Mat. Nauk, 37 (1982), 3.   Google Scholar

[25]

J. V. Poncelet, Traité des Propriétés Projectives des Figures,, Mett, (1822).   Google Scholar

[26]

P. J. Richens and M. V. Berry, Pseudointegrable systems in classical and quantum mechanics,, Physica D, 2 (1981), 495.  doi: 10.1016/0167-2789(81)90024-5.  Google Scholar

[27]

R. Schwartz, The Poncelet grid,, Adv. Geom., 7 (2007), 157.  doi: 10.1515/ADVGEOM.2007.010.  Google Scholar

[28]

S. Tabachnikov, Geometry and Billiards,, Student Mathematical Library, (2005).   Google Scholar

[29]

W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl Theorem mod 2,, Trans. Amer. Math. Soc., 140 (1969), 1.   Google Scholar

[30]

M. Viana, Dynamics of Interval Exchange Maps and Teichmüller flows,, Lecture Notes, (2008).   Google Scholar

[31]

A. N. Zemljakov and A. B. Katok, Topological transitivity of billiards in polygons,, (Russian) Mat. Zametki, 18 (1975), 291.   Google Scholar

[32]

A. Zorich, Flat surfaces,, in Frontiers in Number Theory, (2006), 437.  doi: 10.1007/978-3-540-31347-2_13.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Mathematical Methods of Classical Mechanics,, Graduate Texts in Mathematics, (1978).   Google Scholar

[2]

V. I. Arnold, Poly-integrable flows,, (Russian) Algebra i Analiz, 4 (1992), 54.   Google Scholar

[3]

J. S. Athreya, A. Eskin and A. Zorich, Right-angled billiards and volumes of moduli spaces of quadratic differentials on $\mathbb CP^1$,, , (2013).   Google Scholar

[4]

H. J. M. Bos, C. Kers, F. Oort and D. W. Raven, Poncelet's closure theorem,, Expo. Math., 5 (1987), 289.   Google Scholar

[5]

A. Cayley, Note on the porism of the in-and-circumscribed polygon,, Philosophical Magazine, 6 (1853), 99.   Google Scholar

[6]

A. Cayley, Developments on the porism of the in-and-circumscribed polygon,, Philosophical Magazine, 7 (1854), 339.   Google Scholar

[7]

M. Chasles, Géométrie pure. Théorèmes sur les sections coniques confocales,, Ann. Math. Pures Appl. [Ann. Gergonne], 18 (): 269.   Google Scholar

[8]

G. Darboux, Sur les polygones inscrits et circonscrits à l'ellipsoĩde,, Bulletin de la Société Philomathique, 7 (1870), 92.   Google Scholar

[9]

V. Dragović and M. Radnović, Cayley-type conditions for billiards within $k$ quadrics in $\mathbf R^d$,, J. Phys. A, 37 (2004), 1269.  doi: 10.1088/0305-4470/37/4/014.  Google Scholar

[10]

V. Dragović and M. Radnović, A survey of the analytical description of periodic elliptical billiard trajectories,, J. Math. Sci. (N. Y.), 135 (2006), 3244.  doi: 10.1007/s10958-006-0154-2.  Google Scholar

[11]

V. Dragović and M. Radnović, Geometry of integrable billiards and pencils of quadrics,, J. Math. Pures Appl. (9), 85 (2006), 758.  doi: 10.1016/j.matpur.2005.12.002.  Google Scholar

[12]

V. Dragović and M. Radnović, Bifurcations of Liouville tori in elliptical billiards,, Regul. Chaotic Dyn., 14 (2009), 479.  doi: 10.1134/S1560354709040054.  Google Scholar

[13]

V. Dragović and M. Radnović, Poncelet Porisms and Beyond. Integrable Billiards, Hyperelliptic Jacobians and Pencils of Quadrics,, Frontiers in Mathematics, (2011).  doi: 10.1007/978-3-0348-0015-0.  Google Scholar

[14]

J. Fay, Kernel functions, analytic torsion, and moduli spaces,, Mem. Amer. Math. Soc., 96 (1992).  doi: 10.1090/memo/0464.  Google Scholar

[15]

L. Flatto, Poncelet's Theorem,, Chapter 15 by S. Tabachnikov, (2009).   Google Scholar

[16]

C. Jacobi, Fundamenta Nova Theoriae Functiorum Ellipticarum,, 1829., ().   Google Scholar

[17]

C. Jacobi, Gesammelte Werke: Vorlesungen über Dynamic. Supplementband,, Berlin, (1884).   Google Scholar

[18]

J. L. King, Three problems in search of a measure,, Amer. Math. Monthly, 101 (1994), 609.  doi: 10.2307/2974690.  Google Scholar

[19]

V. Kozlov and D. Treshchëv, Billiards,, Amer. Math. Soc., (1991).   Google Scholar

[20]

V. V. Kozlov, Dynamical systems on a torus with multivalued integrals,, (Russian) Tr. Mat. Inst. Steklova, 256 (2007), 201.  doi: 10.1134/S0081543807010105.  Google Scholar

[21]

M. Levi and S. Tabachnikov, The Poncelet grid and billiards in ellipses,, Amer. Math. Monthly, 114 (2007), 895.   Google Scholar

[22]

A. G. Maier, Trajectories on closable orientable surfaces,, (Russian) Rec. Math. [Mat. Sbornik] N.S., 12(54) (1943), 71.   Google Scholar

[23]

H. Masur and S. Tabachnikov, Rational billiards and flat structures,, in Handbook of Dynamical Systems, (2002), 1015.  doi: 10.1016/S1874-575X(02)80015-7.  Google Scholar

[24]

S. P. Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory,, (Russian) Uspekhi Mat. Nauk, 37 (1982), 3.   Google Scholar

[25]

J. V. Poncelet, Traité des Propriétés Projectives des Figures,, Mett, (1822).   Google Scholar

[26]

P. J. Richens and M. V. Berry, Pseudointegrable systems in classical and quantum mechanics,, Physica D, 2 (1981), 495.  doi: 10.1016/0167-2789(81)90024-5.  Google Scholar

[27]

R. Schwartz, The Poncelet grid,, Adv. Geom., 7 (2007), 157.  doi: 10.1515/ADVGEOM.2007.010.  Google Scholar

[28]

S. Tabachnikov, Geometry and Billiards,, Student Mathematical Library, (2005).   Google Scholar

[29]

W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl Theorem mod 2,, Trans. Amer. Math. Soc., 140 (1969), 1.   Google Scholar

[30]

M. Viana, Dynamics of Interval Exchange Maps and Teichmüller flows,, Lecture Notes, (2008).   Google Scholar

[31]

A. N. Zemljakov and A. B. Katok, Topological transitivity of billiards in polygons,, (Russian) Mat. Zametki, 18 (1975), 291.   Google Scholar

[32]

A. Zorich, Flat surfaces,, in Frontiers in Number Theory, (2006), 437.  doi: 10.1007/978-3-540-31347-2_13.  Google Scholar

[1]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[2]

Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005

[3]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[4]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[5]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[6]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[7]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[8]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[9]

Yuanshi Wang. Asymmetric diffusion in a two-patch mutualism system characterizing exchange of resource for resource. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 963-985. doi: 10.3934/dcdsb.2020149

[10]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[11]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[12]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[13]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[14]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[15]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[16]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[17]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[18]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[19]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[20]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]