April  2014, 8(2): 139-176. doi: 10.3934/jmd.2014.8.139

Growth rate of periodic orbits for geodesic flows over surfaces with radially symmetric focusing caps

1. 

Department of Mathematics, Indiana University, Rawles Hall, 831 East 3rd St, Bloomington, IN 47405, United States

Received  November 2011 Revised  August 2014 Published  November 2014

We obtain a precise asymptotic formula for the growth rate of periodic orbits of the geodesic flow over metrics on surfaces with negative curvature outside of a disjoint union of radially symmetric focusing caps of positive curvature. This extends results of G. Margulis and G. Knieper for negative and nonpositive curvature respectively.
Citation: Bryce Weaver. Growth rate of periodic orbits for geodesic flows over surfaces with radially symmetric focusing caps. Journal of Modern Dynamics, 2014, 8 (2) : 139-176. doi: 10.3934/jmd.2014.8.139
References:
[1]

M. Babillot, On the mixing property for hyperbolic systems,, Israel J. Math., 129 (2002), 61.  doi: 10.1007/BF02773153.  Google Scholar

[2]

L. Barreira and Y. Pesin, Lyapunov Exponents and Smooth Ergodic Theory,, American Mathematical Society, (2002).   Google Scholar

[3]

M. Brin and G. Stuck, Introduction to Dynamical Systems,, Cambridge University Press, (2002).  doi: 10.1017/CBO9780511755316.  Google Scholar

[4]

K. Burns and V. Donnay, Embedded surfaces with ergodic geodesic flow,, Inter. J. Bifur. Chaos Appl. Sci. Engrg., 7 (1997), 1509.  doi: 10.1142/S0218127497001199.  Google Scholar

[5]

K. Burns and M. Gerber, Real analytic Bernoulli geodesic flows on $S^2$,, Ergod. Th. Dynam. Sys., 9 (1989), 27.  doi: 10.1017/S0143385700004806.  Google Scholar

[6]

K. Burns and A. Katok, Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems,, Erg. Theory Dynam. Systems, 14 (1994), 757.  doi: 10.1017/S0143385700008142.  Google Scholar

[7]

N. Chernov and R. Markarian, Chaotic Billiards,, American Mathematical Society, (2006).  doi: 10.1090/surv/127.  Google Scholar

[8]

M. P. Do Carmo, Differential Geometry of Curves and Surfaces,, Prentice-Hall, (1976).   Google Scholar

[9]

M. P. Do Carmo, Riemannian Geometry,, Birkhäuser Boston, (1992).   Google Scholar

[10]

V. Donnay, Geodesic flow on the two-sphere. I. Positive measure entropy,, Ergod. Th. Dynam. Sys., 8 (1988), 531.  doi: 10.1017/S0143385700004685.  Google Scholar

[11]

V. Donnay, Geodesic flow on the two-sphere. II. Ergodicity,, in Dynamical Systems, (1342), 112.  doi: 10.1007/BFb0082827.  Google Scholar

[12]

V. Donnay and C. Liverani, Potentials on the two-torus for which the Hamiltonian flow is ergodic,, Commun. Math. Phys., 135 (1991), 267.  doi: 10.1007/BF02098044.  Google Scholar

[13]

P. Eberlein, Geometry of Nonpositively Curved Manifolds,, University of Chicago Press, (1996).   Google Scholar

[14]

D. Genin, Regular and Chaotic Dynamics of Outer Billiards,, Ph.D. Thesis, (2005).   Google Scholar

[15]

R. Gunesch, Precise Asymptotics for Periodic Orbits of the Geodesic Flow in Nonpositive Curvature,, Ph.D. Thesis, (2002).   Google Scholar

[16]

B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[17]

V. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits,, Comm. Math. Phys., 211 (2000), 253.  doi: 10.1007/s002200050811.  Google Scholar

[18]

A. Katok, Bernoulli diffeomorphisms on surfaces,, Ann. of Math. (2), 110 (1979), 529.  doi: 10.2307/1971237.  Google Scholar

[19]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137.   Google Scholar

[20]

A. Katok, Nonuniform hyperbolicity and structure of smooth dynamical systems,, in Proceedings of the International Congress of Mathematicians, (1983), 1245.   Google Scholar

[21]

G. Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds,, Ann. of Math. (2), 148 (1998), 291.  doi: 10.2307/120995.  Google Scholar

[22]

G. Knieper, Hyperbolic dynamics and Riemannian geometry,, in Handbook of Dynamical Systems, (2002), 453.  doi: 10.1016/S1874-575X(02)80008-X.  Google Scholar

[23]

G. Margulis, On Some Aspects of the Theory of Anosov Systems,, Springer-Verlag, (2004).  doi: 10.1007/978-3-662-09070-1.  Google Scholar

[24]

W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flow,, Ann. of Math. (2), 118 (1983), 573.  doi: 10.2307/2006982.  Google Scholar

[25]

S. Tabachnikov, Geometry and Billiards,, American Mathematical Society, (2005).   Google Scholar

show all references

References:
[1]

M. Babillot, On the mixing property for hyperbolic systems,, Israel J. Math., 129 (2002), 61.  doi: 10.1007/BF02773153.  Google Scholar

[2]

L. Barreira and Y. Pesin, Lyapunov Exponents and Smooth Ergodic Theory,, American Mathematical Society, (2002).   Google Scholar

[3]

M. Brin and G. Stuck, Introduction to Dynamical Systems,, Cambridge University Press, (2002).  doi: 10.1017/CBO9780511755316.  Google Scholar

[4]

K. Burns and V. Donnay, Embedded surfaces with ergodic geodesic flow,, Inter. J. Bifur. Chaos Appl. Sci. Engrg., 7 (1997), 1509.  doi: 10.1142/S0218127497001199.  Google Scholar

[5]

K. Burns and M. Gerber, Real analytic Bernoulli geodesic flows on $S^2$,, Ergod. Th. Dynam. Sys., 9 (1989), 27.  doi: 10.1017/S0143385700004806.  Google Scholar

[6]

K. Burns and A. Katok, Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems,, Erg. Theory Dynam. Systems, 14 (1994), 757.  doi: 10.1017/S0143385700008142.  Google Scholar

[7]

N. Chernov and R. Markarian, Chaotic Billiards,, American Mathematical Society, (2006).  doi: 10.1090/surv/127.  Google Scholar

[8]

M. P. Do Carmo, Differential Geometry of Curves and Surfaces,, Prentice-Hall, (1976).   Google Scholar

[9]

M. P. Do Carmo, Riemannian Geometry,, Birkhäuser Boston, (1992).   Google Scholar

[10]

V. Donnay, Geodesic flow on the two-sphere. I. Positive measure entropy,, Ergod. Th. Dynam. Sys., 8 (1988), 531.  doi: 10.1017/S0143385700004685.  Google Scholar

[11]

V. Donnay, Geodesic flow on the two-sphere. II. Ergodicity,, in Dynamical Systems, (1342), 112.  doi: 10.1007/BFb0082827.  Google Scholar

[12]

V. Donnay and C. Liverani, Potentials on the two-torus for which the Hamiltonian flow is ergodic,, Commun. Math. Phys., 135 (1991), 267.  doi: 10.1007/BF02098044.  Google Scholar

[13]

P. Eberlein, Geometry of Nonpositively Curved Manifolds,, University of Chicago Press, (1996).   Google Scholar

[14]

D. Genin, Regular and Chaotic Dynamics of Outer Billiards,, Ph.D. Thesis, (2005).   Google Scholar

[15]

R. Gunesch, Precise Asymptotics for Periodic Orbits of the Geodesic Flow in Nonpositive Curvature,, Ph.D. Thesis, (2002).   Google Scholar

[16]

B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[17]

V. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits,, Comm. Math. Phys., 211 (2000), 253.  doi: 10.1007/s002200050811.  Google Scholar

[18]

A. Katok, Bernoulli diffeomorphisms on surfaces,, Ann. of Math. (2), 110 (1979), 529.  doi: 10.2307/1971237.  Google Scholar

[19]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137.   Google Scholar

[20]

A. Katok, Nonuniform hyperbolicity and structure of smooth dynamical systems,, in Proceedings of the International Congress of Mathematicians, (1983), 1245.   Google Scholar

[21]

G. Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds,, Ann. of Math. (2), 148 (1998), 291.  doi: 10.2307/120995.  Google Scholar

[22]

G. Knieper, Hyperbolic dynamics and Riemannian geometry,, in Handbook of Dynamical Systems, (2002), 453.  doi: 10.1016/S1874-575X(02)80008-X.  Google Scholar

[23]

G. Margulis, On Some Aspects of the Theory of Anosov Systems,, Springer-Verlag, (2004).  doi: 10.1007/978-3-662-09070-1.  Google Scholar

[24]

W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flow,, Ann. of Math. (2), 118 (1983), 573.  doi: 10.2307/2006982.  Google Scholar

[25]

S. Tabachnikov, Geometry and Billiards,, American Mathematical Society, (2005).   Google Scholar

[1]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[2]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[3]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[4]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[5]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[6]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[7]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[8]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[9]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[10]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[11]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[12]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[15]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[16]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[17]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[18]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[19]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[20]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]