April  2014, 8(2): 221-250. doi: 10.3934/jmd.2014.8.221

Pseudo-automorphisms with no invariant foliation

1. 

Department of Mathematics, Stony Brook University, Stony Brook, NY 11794, United States

2. 

Département de Mathématiques et Applications (DMA), ENS Ulm, Paris, rue d’Ulm, France – Institut de Recherches Mathématiques de Rennes (IRMAR), Université de Rennes 1, UMR 6625 du CNRS, Bât. 22–23 du campus de Beaulieu, 35042 Rennes cedex, France

3. 

Department of Mathematics, Florida State University, Tallahassee, FL 32306, United States

Received  October 2013 Revised  May 2014 Published  November 2014

We construct an example of a birational transformation of a rational threefold for which the first and second dynamical degrees coincide and are $>1$, but which does not preserve any holomorphic (singular) foliation. In particular, this provides a negative answer to a question of Guedj. On our way, we develop several techniques to study foliations which are invariant under birational transformations.
Citation: Eric Bedford, Serge Cantat, Kyounghee Kim. Pseudo-automorphisms with no invariant foliation. Journal of Modern Dynamics, 2014, 8 (2) : 221-250. doi: 10.3934/jmd.2014.8.221
References:
[1]

T. Bayraktar and S. Cantat, Constraints on automorphism groups of higher dimensional manifolds,, J. Math. Anal. Appl., 405 (2013), 209.  doi: 10.1016/j.jmaa.2013.03.048.  Google Scholar

[2]

E. Bedford, J. Diller and K. Kim, Pseudoautomorphisms with invariant elliptic curves,, to appear in Proceedings of The Abel Symposium 2013, (2013).   Google Scholar

[3]

E. Bedford and K. Kim, Dynamics of (pseudo) automorphisms of 3-space: Periodicity versus positive entropy,, Publ. Mat., 58 (2014), 65.  doi: 10.5565/PUBLMAT_58114_04.  Google Scholar

[4]

E. Bedford and K. Kim, Pseudo-automorphisms without dimension-reducing factors,, Manuscript, (2012).   Google Scholar

[5]

M.-J. Bertin and M. Pathiaux-Delefosse, Conjecture de Lehmer et petits nombres de Salem,, Queen's Papers in Pure and Applied Mathematics, (1989).   Google Scholar

[6]

S. Cantat, Quelques aspects des systèmes dynamiques polynomiaux: Existence, exemples, rigidité,, in Quelques aspects des systèmes dynamiques polynomiaux, (2010), 13.   Google Scholar

[7]

S. Cantat, Dynamics of automorphisms of compact complex surfaces,, in Frontiers in Complex Dynamics: In celebration of John Milnor's 80th birthday, (2013), 463.   Google Scholar

[8]

S. Cantat and C. Favre, Symétries birationnelles des surfaces feuilletées,, J. Reine Angew. Math., 561 (2003), 199.  doi: 10.1515/crll.2003.066.  Google Scholar

[9]

G. Casale, Enveloppe galoisienne d'une application rationnelle de $\mathbbP^1$,, Publ. Mat., 50 (2006), 191.  doi: 10.5565/PUBLMAT_50106_10.  Google Scholar

[10]

G. Casale, The Galois groupoid of Picard-Painlevé VI equation,, in Algebraic, (2007), 15.   Google Scholar

[11]

J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces,, Amer. J. Math., 123 (2001), 1135.  doi: 10.1353/ajm.2001.0038.  Google Scholar

[12]

T.-C. Dinh and N. Sibony, Une borne supérieure pour l'entropie topologique d'une application rationnelle,, Ann. of Math. (2), 161 (2005), 1637.  doi: 10.4007/annals.2005.161.1637.  Google Scholar

[13]

M. H. Gizatullin, Rational $G$-surfaces,, Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 110.  doi: 10.1070/IM1981v016n01ABEH001279.  Google Scholar

[14]

M. Gromov, On the entropy of holomorphic maps,, Enseign. Math. (2), 49 (2003), 217.   Google Scholar

[15]

V. Guedj, Propriétés ergodiques des applications rationnelles,, in Quelques Aspects des Systèmes Dynamiques Polynomiaux, (2010), 97.   Google Scholar

[16]

S. R. Kaschner, R. A. Pérez and R. K. W. Roeder, Examples of rational maps of $\mathbb{CP}^2$ with equal dynamical degrees and no invariant foliation,, preprint, (2013).   Google Scholar

[17]

B. Malgrange, On nonlinear differential Galois theory,, Dedicated to the memory of Jacques-Louis Lions, 23 (2002), 219.  doi: 10.1142/S0252959902000213.  Google Scholar

[18]

B. Malgrange, On nonlinear differential Galois theory,, in Frontiers in Mathematical Analysis and Numerical Methods, (2004), 185.   Google Scholar

[19]

B. Malgrange, Le groupoï de Galois d'un feuilletage,, in Essays on Geometry and Related Topics, (2001), 465.   Google Scholar

[20]

K. Oguiso and T. T. Truong, Explicit examples of rational and Calabi-Yau threefolds with primitive automorphisms of positive entropy,, preprint, (2013), 1.   Google Scholar

[21]

T. T. Truong, On automorphisms of blowups of $\mathbbP^3$,, preprint, (2012), 1.   Google Scholar

[22]

A. P. Veselov, What is an integrable mapping?,, in What is integrability?, (1991), 251.  doi: 10.1007/978-3-642-88703-1_6.  Google Scholar

[23]

Y. Yomdin, Volume growth and entropy,, Israel J. Math., 57 (1987), 285.  doi: 10.1007/BF02766215.  Google Scholar

[24]

D.-Q. Zhang, The $g$-periodic subvarieties for an automorphism $g$ of positive entropy on a compact Kähler manifold,, Adv. Math., 223 (2010), 405.  doi: 10.1016/j.aim.2009.08.010.  Google Scholar

show all references

References:
[1]

T. Bayraktar and S. Cantat, Constraints on automorphism groups of higher dimensional manifolds,, J. Math. Anal. Appl., 405 (2013), 209.  doi: 10.1016/j.jmaa.2013.03.048.  Google Scholar

[2]

E. Bedford, J. Diller and K. Kim, Pseudoautomorphisms with invariant elliptic curves,, to appear in Proceedings of The Abel Symposium 2013, (2013).   Google Scholar

[3]

E. Bedford and K. Kim, Dynamics of (pseudo) automorphisms of 3-space: Periodicity versus positive entropy,, Publ. Mat., 58 (2014), 65.  doi: 10.5565/PUBLMAT_58114_04.  Google Scholar

[4]

E. Bedford and K. Kim, Pseudo-automorphisms without dimension-reducing factors,, Manuscript, (2012).   Google Scholar

[5]

M.-J. Bertin and M. Pathiaux-Delefosse, Conjecture de Lehmer et petits nombres de Salem,, Queen's Papers in Pure and Applied Mathematics, (1989).   Google Scholar

[6]

S. Cantat, Quelques aspects des systèmes dynamiques polynomiaux: Existence, exemples, rigidité,, in Quelques aspects des systèmes dynamiques polynomiaux, (2010), 13.   Google Scholar

[7]

S. Cantat, Dynamics of automorphisms of compact complex surfaces,, in Frontiers in Complex Dynamics: In celebration of John Milnor's 80th birthday, (2013), 463.   Google Scholar

[8]

S. Cantat and C. Favre, Symétries birationnelles des surfaces feuilletées,, J. Reine Angew. Math., 561 (2003), 199.  doi: 10.1515/crll.2003.066.  Google Scholar

[9]

G. Casale, Enveloppe galoisienne d'une application rationnelle de $\mathbbP^1$,, Publ. Mat., 50 (2006), 191.  doi: 10.5565/PUBLMAT_50106_10.  Google Scholar

[10]

G. Casale, The Galois groupoid of Picard-Painlevé VI equation,, in Algebraic, (2007), 15.   Google Scholar

[11]

J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces,, Amer. J. Math., 123 (2001), 1135.  doi: 10.1353/ajm.2001.0038.  Google Scholar

[12]

T.-C. Dinh and N. Sibony, Une borne supérieure pour l'entropie topologique d'une application rationnelle,, Ann. of Math. (2), 161 (2005), 1637.  doi: 10.4007/annals.2005.161.1637.  Google Scholar

[13]

M. H. Gizatullin, Rational $G$-surfaces,, Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 110.  doi: 10.1070/IM1981v016n01ABEH001279.  Google Scholar

[14]

M. Gromov, On the entropy of holomorphic maps,, Enseign. Math. (2), 49 (2003), 217.   Google Scholar

[15]

V. Guedj, Propriétés ergodiques des applications rationnelles,, in Quelques Aspects des Systèmes Dynamiques Polynomiaux, (2010), 97.   Google Scholar

[16]

S. R. Kaschner, R. A. Pérez and R. K. W. Roeder, Examples of rational maps of $\mathbb{CP}^2$ with equal dynamical degrees and no invariant foliation,, preprint, (2013).   Google Scholar

[17]

B. Malgrange, On nonlinear differential Galois theory,, Dedicated to the memory of Jacques-Louis Lions, 23 (2002), 219.  doi: 10.1142/S0252959902000213.  Google Scholar

[18]

B. Malgrange, On nonlinear differential Galois theory,, in Frontiers in Mathematical Analysis and Numerical Methods, (2004), 185.   Google Scholar

[19]

B. Malgrange, Le groupoï de Galois d'un feuilletage,, in Essays on Geometry and Related Topics, (2001), 465.   Google Scholar

[20]

K. Oguiso and T. T. Truong, Explicit examples of rational and Calabi-Yau threefolds with primitive automorphisms of positive entropy,, preprint, (2013), 1.   Google Scholar

[21]

T. T. Truong, On automorphisms of blowups of $\mathbbP^3$,, preprint, (2012), 1.   Google Scholar

[22]

A. P. Veselov, What is an integrable mapping?,, in What is integrability?, (1991), 251.  doi: 10.1007/978-3-642-88703-1_6.  Google Scholar

[23]

Y. Yomdin, Volume growth and entropy,, Israel J. Math., 57 (1987), 285.  doi: 10.1007/BF02766215.  Google Scholar

[24]

D.-Q. Zhang, The $g$-periodic subvarieties for an automorphism $g$ of positive entropy on a compact Kähler manifold,, Adv. Math., 223 (2010), 405.  doi: 10.1016/j.aim.2009.08.010.  Google Scholar

[1]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[2]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[3]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[4]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[5]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[6]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[7]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[8]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[9]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]