January  2014, 8(1): 25-59. doi: 10.3934/jmd.2014.8.25

Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows

1. 

School of Mathematics, University of Bristol, Bristol BS8 1TW

2. 

Département de mathématique, UMR 8628 CNRS, Bât. 425, Université Paris-Sud, 91405 ORSAY Cedex, France

Received  June 2013 Published  July 2014

In this paper, we study the distribution of integral points on parametric families of affine homogeneous varieties. By the work of Borel and Harish-Chandra, the set of integral points on each such variety consists of finitely many orbits of arithmetic groups, and we establish an asymptotic formula (on average) for the number of the orbits indexed by their Siegel weights. In particular, we deduce asymptotic formulas for the number of inequivalent integral representations by decomposable forms and by norm forms in division algebras, and for the weighted number of equivalence classes of integral points on sections of quadrics. Our arguments use the exponential mixing property of diagonal flows on homogeneous spaces.
Citation: Alexander Gorodnik, Frédéric Paulin. Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows. Journal of Modern Dynamics, 2014, 8 (1) : 25-59. doi: 10.3934/jmd.2014.8.25
References:
[1]

T. Apostol, Introduction to Analytic Number Theory, Undergrad. Texts Math., Springer Verlag, New York-Heidelberg, 1976.

[2]

M. Babillot, Points entiers et groupes discrets: De l'analyse aux systèmes dynamiques, in Rigidité, Groupe Fondamental et Dynamique, Panor. Synthèses, 13, Soc. Math. France, Paris, 2002, 1-119.

[3]

B. Bekka, P. de la Harpe and A. Valette, Kazhdan's Property (T), New Math. Mono., 11, Cambridge Univ. Press, 2008. doi: 10.1017/CBO9780511542749.

[4]

Y. Benoist and H. Oh, Effective equidistribution of $S$-integral points on symmetric varieties, Ann. Inst. Fourier (Grenoble), 62 (2012), 1889-1942. doi: 10.5802/aif.2738.

[5]

A. Borel, Ensembles fundamentaux pour les groupes arithmétiques, in Colloque sur la Théorie des Groupes Algébriques (Bruxelles, 1962), Librairie Universitaire, Louvain; Gauthier-Villars, Paris, 1962, 23-40.

[6]

A. Borel, Introduction aux Groupes Arithmétiques, Publications de l'Institut de Mathématique de l'Université de Strasbourg, XV, Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris, 1969.

[7]

A. Borel, Linear Algebraic Groups, 2nd edition, Grad. Texts Math., 126, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0941-6.

[8]

A. Borel, Reduction theory for arithmetic groups, in Algebraic Groups and Discontinuous Subgroups (eds. A. Borel and G. D. Mostow) (Proc. Sympos. Pure Math. Boulder, Colo., 1965), Amer. Math. Soc., 1966, 20-25.

[9]

A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2), 75 (1962), 485-535. doi: 10.2307/1970210.

[10]

A. Borel and L. Ji, Compactifications of Symmetric and Locally Symmetric Spaces, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 2006.

[11]

M. Borovoi and Z. Rudnick, Hardy-Littlewood varieties and semisimple groups, Invent. Math., 119 (1995), 37-66. doi: 10.1007/BF01245174.

[12]

L. Clozel, Démonstration de la conjecture $\tau$, Invent. Math., 151 (2003), 297-328. doi: 10.1007/s00222-002-0253-8.

[13]

H. Cohn, A Second Course in Number Theory, Wiley, 1962; reprinted as Advanced Number Theory, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1980.

[14]

J.-L. Colliot-Thélène and F. Xu, Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms, Compositio Math., 145 (2009), 309-363. doi: 10.1112/S0010437X0800376X.

[15]

M. Cowling, Sur les coefficients des représentations unitaires des groupes de Lie simples, in Analyse Harmonique sur les Groupes de Lie (Sém. Nancy-Strasbourg 1976-1978), II, Lect. Notes Math., 739, Springer, Berlin, 1979, 132-178.

[16]

W. Duke, Z. Rudnick and P. Sarnak, Density of integer points on affine homogeneous varieties, Duke Math. J., 71 (1993), 143-179. doi: 10.1215/S0012-7094-93-07107-4.

[17]

A. Eskin and C. McMullen, Mixing, counting, and equidistribution in Lie groups, Duke Math. J., 71 (1993), 181-209. doi: 10.1215/S0012-7094-93-07108-6.

[18]

A. Eskin, S. Mozes and N. Shah, Unipotent flows and counting lattice points on homogeneous varieties, Ann. of Math. (2), 143 (1996), 253-299. doi: 10.2307/2118644.

[19]

A. Eskin and H. Oh, Representations of integers by an invariant polynomial and unipotent flows, Duke Math. J., 135 (2006), 481-506. doi: 10.1215/S0012-7094-06-13533-0.

[20]

A. Eskin, Z. Rudnick and P. Sarnak, A proof of Siegel's weight formula, Internat. Math. Res. Notices, 5 (1991), 65-69. doi: 10.1155/S1073792891000090.

[21]

W. T. Gan and H. Oh, Equidistribution of integer points on a family of homogeneous varieties: A problem of Linnik, Compositio Math., 136 (2003), 323-352. doi: 10.1023/A:1023256605535.

[22]

A. Gorodnik and H. Oh, Rational points on homogeneous varieties and equidistribution of adelic periods, Geom. Funct. Anal., 21 (2011), 319-392. doi: 10.1007/s00039-011-0113-z.

[23]

K. Györy, On the distribution of solutions of decomposable form equations, in Number Theory in Progress, Vol. 1 (Zakopane-Kościelisko, 1997) (eds. K. Györy, H. Iwaniec and J. Urbanowicz), de Gruyter, Berlin, 1999, 237-265.

[24]

M. Hirsch, Differential Topology, Grad. Texts Math., 33, Springer-Verlag, New York-Heidelberg, 1976.

[25]

D. Kelmer and P. Sarnak, Strong spectral gaps for compact quotients of products of $ PSL(2,\RR)$, J. Euro. Math. Soc., 11 (2009), 283-313. doi: 10.4171/JEMS/151.

[26]

T. Kimura, Introduction to Prehomogeneous Vector Spaces, Transl. Math. Mono., 215, Amer. Math. Soc., Providence, RI, 2003.

[27]

D. Kleinbock and G. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, in Sinaĭ's Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, 171, Amer. Math. Soc., Providence, RI, 1996, 141-172.

[28]

D. Kleinbock and G. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494. doi: 10.1007/s002220050350.

[29]

H. Koch, Number Theory: Algebraic Numbers and Functions, Grad. Stud. Math., 24, Amer. Math. Soc., Providence, RI, 2000.

[30]

S. Lang, Algebraic Number Theory, Second edition, Grad. Texts Math., 110, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0853-2.

[31]

D. N. Lehmer, Asymptotic evaluation of certain totient sums, Amer. J. Math., 22 (1900), 293-335. doi: 10.2307/2369728.

[32]

A. Nevo, Exponential volume growth, maximal functions on symmetric spaces, and ergodic theorems for semi-simple Lie groups, Erg. Theo. Dyn. Syst., 25 (2005), 1257-1294. doi: 10.1017/S0143385704000951.

[33]

H. Oh, Hardy-Littlewood system and representations of integers by an invariant polynomial, Geom. Funct. Anal., 14 (2004), 791-809. doi: 10.1007/s00039-004-0475-6.

[34]

H. Oh, Orbital counting via mixing and unipotent flows, in Homogeneous Flows, Moduli Spaces and Arithmetic (eds. M. Einsiedler, et al.), Clay Math. Proc., 10, Amer. Math. Soc., Providence, RI, 2010, 339-375.

[35]

E. Peyre, Obstructions au principe de Hasse et à l'approximation faible, Séminaire Bourbaki, Vol. 2003/2004, Astérisque, 299 (2005), 165-193.

[36]

J. Parkkonen and F. Paulin, Équidistribution, comptage et approximation par irrationnels quadratiques, J. Mod. Dyn., 6 (2012), 1-40. doi: 10.3934/jmd.2012.6.1.

[37]

J. Parkkonen and F. Paulin, Counting common perpendicular arcs in negative curvature, preprint, arXiv:1305.1332.

[38]

J. Parkkonen and F. Paulin, On the arithmetic of crossratios and generalised Mertens' formulas, to appear in Ann. Fac. Scien. Toulouse, arXiv:1308.5500, 2013.

[39]

V. Platonov and A. Rapinchuck, Algebraic Groups and Number Theory, Pure and Applied Mathematics, 139, Academic Press, Inc., Boston, MA, 1994.

[40]

M. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972.

[41]

I. Reiner, Maximal Orders, Academic Press, 1975.

[42]

P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math., 34 (1981), 719-739. doi: 10.1002/cpa.3160340602.

[43]

M. Sato and T. Shintani, On zeta functions associated with prehomogeneous vector spaces, Ann. of Math. (2), 100 (1974), 131-170. doi: 10.2307/1970844.

[44]

W. M. Schmidt, Norm form equation, Ann. of Math. (2), 96 (1972), 526-551. doi: 10.2307/1970824.

[45]

J.-P. Serre, Cours d'arithmetique, Collection SUP: "Le Mathématicien,'' 2 Presses Universitaires de France, Paris, 1970.

[46]

C. L. Siegel, On the theory of indefinite quadratic forms, Ann. of Math. (2), 45 (1944), 577-622. doi: 10.2307/1969191.

[47]

C. L. Siegel, The average measure of quadratic forms with given determinant and signature, Ann. of Math. (2), 45 (1944), 667-685. doi: 10.2307/1969296.

[48]

T. A. Springer, Linear algebraic groups, in Algebraic Geometry IV (eds. A. Parshin and I. Shavarevich), Encyc. Math. Scien., 55, Springer-Verlag, 1994, 1-121. doi: 10.1007/978-3-662-03073-8.

[49]

J. L. Thunder, Decomposable form inequalities, Ann. of Math. (2), 153 (2001), 767-804. doi: 10.2307/2661368.

[50]

V. E. Voskresenskiĭ, Algebraic Groups and their Birational Invariants, Transl. Math. Mono., 179, Amer. Math. Soc., Providence, RI, 1998.

[51]

A. Weil, L'intégration dans les groupes topologiques et ses applications, Hermann, 1965.

show all references

References:
[1]

T. Apostol, Introduction to Analytic Number Theory, Undergrad. Texts Math., Springer Verlag, New York-Heidelberg, 1976.

[2]

M. Babillot, Points entiers et groupes discrets: De l'analyse aux systèmes dynamiques, in Rigidité, Groupe Fondamental et Dynamique, Panor. Synthèses, 13, Soc. Math. France, Paris, 2002, 1-119.

[3]

B. Bekka, P. de la Harpe and A. Valette, Kazhdan's Property (T), New Math. Mono., 11, Cambridge Univ. Press, 2008. doi: 10.1017/CBO9780511542749.

[4]

Y. Benoist and H. Oh, Effective equidistribution of $S$-integral points on symmetric varieties, Ann. Inst. Fourier (Grenoble), 62 (2012), 1889-1942. doi: 10.5802/aif.2738.

[5]

A. Borel, Ensembles fundamentaux pour les groupes arithmétiques, in Colloque sur la Théorie des Groupes Algébriques (Bruxelles, 1962), Librairie Universitaire, Louvain; Gauthier-Villars, Paris, 1962, 23-40.

[6]

A. Borel, Introduction aux Groupes Arithmétiques, Publications de l'Institut de Mathématique de l'Université de Strasbourg, XV, Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris, 1969.

[7]

A. Borel, Linear Algebraic Groups, 2nd edition, Grad. Texts Math., 126, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0941-6.

[8]

A. Borel, Reduction theory for arithmetic groups, in Algebraic Groups and Discontinuous Subgroups (eds. A. Borel and G. D. Mostow) (Proc. Sympos. Pure Math. Boulder, Colo., 1965), Amer. Math. Soc., 1966, 20-25.

[9]

A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2), 75 (1962), 485-535. doi: 10.2307/1970210.

[10]

A. Borel and L. Ji, Compactifications of Symmetric and Locally Symmetric Spaces, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 2006.

[11]

M. Borovoi and Z. Rudnick, Hardy-Littlewood varieties and semisimple groups, Invent. Math., 119 (1995), 37-66. doi: 10.1007/BF01245174.

[12]

L. Clozel, Démonstration de la conjecture $\tau$, Invent. Math., 151 (2003), 297-328. doi: 10.1007/s00222-002-0253-8.

[13]

H. Cohn, A Second Course in Number Theory, Wiley, 1962; reprinted as Advanced Number Theory, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1980.

[14]

J.-L. Colliot-Thélène and F. Xu, Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms, Compositio Math., 145 (2009), 309-363. doi: 10.1112/S0010437X0800376X.

[15]

M. Cowling, Sur les coefficients des représentations unitaires des groupes de Lie simples, in Analyse Harmonique sur les Groupes de Lie (Sém. Nancy-Strasbourg 1976-1978), II, Lect. Notes Math., 739, Springer, Berlin, 1979, 132-178.

[16]

W. Duke, Z. Rudnick and P. Sarnak, Density of integer points on affine homogeneous varieties, Duke Math. J., 71 (1993), 143-179. doi: 10.1215/S0012-7094-93-07107-4.

[17]

A. Eskin and C. McMullen, Mixing, counting, and equidistribution in Lie groups, Duke Math. J., 71 (1993), 181-209. doi: 10.1215/S0012-7094-93-07108-6.

[18]

A. Eskin, S. Mozes and N. Shah, Unipotent flows and counting lattice points on homogeneous varieties, Ann. of Math. (2), 143 (1996), 253-299. doi: 10.2307/2118644.

[19]

A. Eskin and H. Oh, Representations of integers by an invariant polynomial and unipotent flows, Duke Math. J., 135 (2006), 481-506. doi: 10.1215/S0012-7094-06-13533-0.

[20]

A. Eskin, Z. Rudnick and P. Sarnak, A proof of Siegel's weight formula, Internat. Math. Res. Notices, 5 (1991), 65-69. doi: 10.1155/S1073792891000090.

[21]

W. T. Gan and H. Oh, Equidistribution of integer points on a family of homogeneous varieties: A problem of Linnik, Compositio Math., 136 (2003), 323-352. doi: 10.1023/A:1023256605535.

[22]

A. Gorodnik and H. Oh, Rational points on homogeneous varieties and equidistribution of adelic periods, Geom. Funct. Anal., 21 (2011), 319-392. doi: 10.1007/s00039-011-0113-z.

[23]

K. Györy, On the distribution of solutions of decomposable form equations, in Number Theory in Progress, Vol. 1 (Zakopane-Kościelisko, 1997) (eds. K. Györy, H. Iwaniec and J. Urbanowicz), de Gruyter, Berlin, 1999, 237-265.

[24]

M. Hirsch, Differential Topology, Grad. Texts Math., 33, Springer-Verlag, New York-Heidelberg, 1976.

[25]

D. Kelmer and P. Sarnak, Strong spectral gaps for compact quotients of products of $ PSL(2,\RR)$, J. Euro. Math. Soc., 11 (2009), 283-313. doi: 10.4171/JEMS/151.

[26]

T. Kimura, Introduction to Prehomogeneous Vector Spaces, Transl. Math. Mono., 215, Amer. Math. Soc., Providence, RI, 2003.

[27]

D. Kleinbock and G. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, in Sinaĭ's Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, 171, Amer. Math. Soc., Providence, RI, 1996, 141-172.

[28]

D. Kleinbock and G. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494. doi: 10.1007/s002220050350.

[29]

H. Koch, Number Theory: Algebraic Numbers and Functions, Grad. Stud. Math., 24, Amer. Math. Soc., Providence, RI, 2000.

[30]

S. Lang, Algebraic Number Theory, Second edition, Grad. Texts Math., 110, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0853-2.

[31]

D. N. Lehmer, Asymptotic evaluation of certain totient sums, Amer. J. Math., 22 (1900), 293-335. doi: 10.2307/2369728.

[32]

A. Nevo, Exponential volume growth, maximal functions on symmetric spaces, and ergodic theorems for semi-simple Lie groups, Erg. Theo. Dyn. Syst., 25 (2005), 1257-1294. doi: 10.1017/S0143385704000951.

[33]

H. Oh, Hardy-Littlewood system and representations of integers by an invariant polynomial, Geom. Funct. Anal., 14 (2004), 791-809. doi: 10.1007/s00039-004-0475-6.

[34]

H. Oh, Orbital counting via mixing and unipotent flows, in Homogeneous Flows, Moduli Spaces and Arithmetic (eds. M. Einsiedler, et al.), Clay Math. Proc., 10, Amer. Math. Soc., Providence, RI, 2010, 339-375.

[35]

E. Peyre, Obstructions au principe de Hasse et à l'approximation faible, Séminaire Bourbaki, Vol. 2003/2004, Astérisque, 299 (2005), 165-193.

[36]

J. Parkkonen and F. Paulin, Équidistribution, comptage et approximation par irrationnels quadratiques, J. Mod. Dyn., 6 (2012), 1-40. doi: 10.3934/jmd.2012.6.1.

[37]

J. Parkkonen and F. Paulin, Counting common perpendicular arcs in negative curvature, preprint, arXiv:1305.1332.

[38]

J. Parkkonen and F. Paulin, On the arithmetic of crossratios and generalised Mertens' formulas, to appear in Ann. Fac. Scien. Toulouse, arXiv:1308.5500, 2013.

[39]

V. Platonov and A. Rapinchuck, Algebraic Groups and Number Theory, Pure and Applied Mathematics, 139, Academic Press, Inc., Boston, MA, 1994.

[40]

M. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972.

[41]

I. Reiner, Maximal Orders, Academic Press, 1975.

[42]

P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math., 34 (1981), 719-739. doi: 10.1002/cpa.3160340602.

[43]

M. Sato and T. Shintani, On zeta functions associated with prehomogeneous vector spaces, Ann. of Math. (2), 100 (1974), 131-170. doi: 10.2307/1970844.

[44]

W. M. Schmidt, Norm form equation, Ann. of Math. (2), 96 (1972), 526-551. doi: 10.2307/1970824.

[45]

J.-P. Serre, Cours d'arithmetique, Collection SUP: "Le Mathématicien,'' 2 Presses Universitaires de France, Paris, 1970.

[46]

C. L. Siegel, On the theory of indefinite quadratic forms, Ann. of Math. (2), 45 (1944), 577-622. doi: 10.2307/1969191.

[47]

C. L. Siegel, The average measure of quadratic forms with given determinant and signature, Ann. of Math. (2), 45 (1944), 667-685. doi: 10.2307/1969296.

[48]

T. A. Springer, Linear algebraic groups, in Algebraic Geometry IV (eds. A. Parshin and I. Shavarevich), Encyc. Math. Scien., 55, Springer-Verlag, 1994, 1-121. doi: 10.1007/978-3-662-03073-8.

[49]

J. L. Thunder, Decomposable form inequalities, Ann. of Math. (2), 153 (2001), 767-804. doi: 10.2307/2661368.

[50]

V. E. Voskresenskiĭ, Algebraic Groups and their Birational Invariants, Transl. Math. Mono., 179, Amer. Math. Soc., Providence, RI, 1998.

[51]

A. Weil, L'intégration dans les groupes topologiques et ses applications, Hermann, 1965.

[1]

Jacinto Marabel Romo. A closed-form solution for outperformance options with stochastic correlation and stochastic volatility. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1185-1209. doi: 10.3934/jimo.2015.11.1185

[2]

David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117

[3]

Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021002

[4]

Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651

[5]

Abbas Bahri. Recent results in contact form geometry. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 21-30. doi: 10.3934/dcds.2004.10.21

[6]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics and Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[7]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[8]

Tony Lyons. Geophysical internal equatorial waves of extreme form. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4471-4486. doi: 10.3934/dcds.2019183

[9]

Gary Lieberman. Nonlocal problems for quasilinear parabolic equations in divergence form. Conference Publications, 2003, 2003 (Special) : 563-570. doi: 10.3934/proc.2003.2003.563

[10]

Rong Dong, Dongsheng Li, Lihe Wang. Regularity of elliptic systems in divergence form with directional homogenization. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 75-90. doi: 10.3934/dcds.2018004

[11]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[12]

Emmanuel Hebey, Jérôme Vétois. Multiple solutions for critical elliptic systems in potential form. Communications on Pure and Applied Analysis, 2008, 7 (3) : 715-741. doi: 10.3934/cpaa.2008.7.715

[13]

Jędrzej Śniatycki, Oǧul Esen. De Donder form for second order gravity. Journal of Geometric Mechanics, 2020, 12 (1) : 85-106. doi: 10.3934/jgm.2020005

[14]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[15]

Hyungjin Huh. A special form of solution to half-wave equations. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021056

[16]

Jana Majerová. Correlation integral and determinism for a family of $2^\infty$ maps. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5067-5096. doi: 10.3934/dcds.2016020

[17]

Heide Gluesing-Luerssen. Partitions of Frobenius rings induced by the homogeneous weight. Advances in Mathematics of Communications, 2014, 8 (2) : 191-207. doi: 10.3934/amc.2014.8.191

[18]

Richard Miles, Thomas Ward. A directional uniformity of periodic point distribution and mixing. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1181-1189. doi: 10.3934/dcds.2011.30.1181

[19]

Xiwang Cao, Hao Chen, Sihem Mesnager. Further results on semi-bent functions in polynomial form. Advances in Mathematics of Communications, 2016, 10 (4) : 725-741. doi: 10.3934/amc.2016037

[20]

Amal Attouchi, Eero Ruosteenoja. Gradient regularity for a singular parabolic equation in non-divergence form. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5955-5972. doi: 10.3934/dcds.2020254

2021 Impact Factor: 0.641

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]