Citation: |
[1] |
J. Athreya, Quantitative recurrence and large deviations for Teichmuller geodsic flow, Geom. Dedicata, 119 (2006), 121-140.doi: 10.1007/s10711-006-9058-z. |
[2] |
J. Athreya and G. Forni, Deviation of ergodic averages for rational polygonal billiards, Duke Math. J., 144 (2008), 285-319.doi: 10.1215/00127094-2008-037. |
[3] |
D. Aulicino, Teichmüller discs with completely degenerate Kontsevich-Zorich spectrum, arXiv:1205.2359v1, (2012). |
[4] |
A. Avila and G. Forni, Weak mixing for interval exchange transformations and translations flows, Ann. of Math. (2), 165 (2007), 637-664.doi: 10.4007/annals.2007.165.637. |
[5] |
A. Avila and S. Gouëzel, Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow, Ann. of Math. (2), 178 (2010), 385-442.doi: 10.4007/annals.2013.178.2.1. |
[6] |
A. Avila, S. Gouëzel and J.-C. Yoccoz, Exponential mixing for the Teichmüller flow, Pub. Math. Inst. Hautes Études Sci., 104 (2006), 143-211.doi: 10.1007/s10240-006-0001-5. |
[7] |
A. Avila, C. Matheus and J.-C. Yoccoz, On the Kontsevich-Zorich cocycle for McMullen's family of symmetric translation surfaces, in preparation. |
[8] |
A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of Zorich-Kontsevich conjecture, Acta Math., 198 (2007), 1-56.doi: 10.1007/s11511-007-0012-1. |
[9] |
A. Avila and M. Viana, Extremal Lyapunov exponents: An invariance principle and applications, Invent. Math., 181 (2010), 115-189.doi: 10.1007/s00222-010-0243-1. |
[10] |
M. Bainbridge, Euler characteristics of Teichmüller curves in genus two, Geom. Topol., 11 (2007), 1887-2073.doi: 10.2140/gt.2007.11.1887. |
[11] |
N. Bergeron, Le Spectre des Surfaces Hyperboliques, Savoirs Actuels (Les Ulis), EDP Sciences, Les Ulis; CNRS Éditions, Paris, 2011. |
[12] |
J. Borwein and P. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, Reprint of the 1987 original, Canadian Mathematical Society Series of Monographs and Advanced Texts, 4, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1998. |
[13] |
K. Burns, H. Masur and A. Wilkinson, The Weil-Petersson geodesic flow is ergodic, Ann. of Math. (2), 175 (2012), 835-908.doi: 10.4007/annals.2012.175.2.8. |
[14] |
A. Bufetov, Limit theorems for translations flows, Ann. of Math. (2), 179 (2014), 431-499.doi: 10.4007/annals.2014.179.2.2. |
[15] |
K. Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc., 17 (2004), 871-908.doi: 10.1090/S0894-0347-04-00461-8. |
[16] |
D. Chen and M. Möller, Quadratic differentials in low genus: Exceptional and non-varying strata, Ann. Sci. Éc. Norm. Supér. (4), 47 (2014), 309-369. |
[17] |
Y. Cheung and A. Eskin, Unique ergodicity of translation flows, in Partially Hyperbolic Dynamics, Laminations, and Teichmúller Flow, Fields Inst. Commun., 51, Amer. Math. Soc., Providence, RI, 2007, 213-221. |
[18] |
V. Delecroix, Cardinality of Rauzy classes, Ann. Inst. Fourier (Grenoble), 63 (2013), 1651-1715.doi: 10.5802/aif.2811. |
[19] |
P. Deligne, Un théorème de finitude pour la monodromie, in Discrete Groups in Geometry and Analysis (New Haven, Conn., 1984), Progr. Math., 67, Birkhäuser Boston, Boston, MA, 1987, 1-19.doi: 10.1007/978-1-4899-6664-3_1. |
[20] |
V. Delecroix, P. Hubert and S. Lelièvre, Diffusion for the periodic wind-tree model, arXiv:1107.1810v3, (2011), 1-30. |
[21] |
V. Delecroix and C. Matheus, Un contre-exemple à la réciproque du critère de Forni pour la positivité des exposants de Lyapunov du cocycle de Kontsevich-Zorich, arXiv:1103.1560v2, (2011), 1-5. |
[22] |
Disquisitiones Mathematicae, http://www.matheuscmss.wordpress.com. |
[23] |
J. Ellenberg and D. B. McReynolds, Arithmetic Veech sublattices of $SL(2,\mathbbZ)$, Duke Math. J., 161 (2012), 415-429.doi: 10.1215/00127094-1507412. |
[24] |
A. Eskin, M. Kontsevich and A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publ. Math. Inst. Hautes Études Sci., 120 (2014), 207-333.doi: 10.1007/s10240-013-0060-3. |
[25] |
A. Eskin, M. Kontsevich and A. Zorich, Lyapunov spectrum of square-tiled cyclic covers, J. Mod. Dyn., 5 (2011), 319-353.doi: 10.3934/jmd.2011.5.319. |
[26] |
A. Eskin, H. Masur and A. Zorich, Moduli spaces of abelian differentials: The principal boundary, counting problems, and the Siegel-Veech constants, Publ. Math. Inst. Hautes Études Sci., 97 (2003), 61-179.doi: 10.1007/s10240-003-0015-1. |
[27] |
A. Eskin and M. Mirzakhani, Invariant and stationary measures for the $SL(2,\mathbbR)$ action on moduli space, arXiv:1302.3320. |
[28] |
A. Eskin and A. Okounkov, Asymptotics of number of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math., 145 (2001), 59-103.doi: 10.1007/s002220100142. |
[29] |
A. Eskin, A. Okounkov and R. Pandharipande, The theta characteristic of a branched covering, Adv. Math., 217 (2008), 873-888.doi: 10.1016/j.aim.2006.08.001. |
[30] |
G. Forni, Deviations of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2), 155 (2002), 1-103.doi: 10.2307/3062150. |
[31] |
G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle, in Handbook of Dynamical Systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, 549-580.doi: 10.1016/S1874-575X(06)80033-0. |
[32] |
G. Forni, A geometric criterion for the nonuniform hyperbolicity of the Kontsevich-Zorich cocycle, J. Mod. Dyn., 5 (2011), 355-395.doi: 10.3934/jmd.2011.5.355. |
[33] |
G. Forni, On the Brin prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations, J. Mod. Dyn., 6 (2012), 139-182.doi: 10.3934/jmd.2012.6.139. |
[34] |
G. Forni and C. Matheus, An example of a Teichmüller disk in genus $4$ with degenerate Kontsevich-Zorich spectrum, arXiv:0810.0023v1, (2008), 1-8. |
[35] |
G. Forni, C. Matheus and A. Zorich, Square-tiled cyclic covers, J. Mod. Dyn., 5 (2011), 285-318.doi: 10.3934/jmd.2011.5.285. |
[36] |
G. Forni, C. Matheus and A. Zorich, Lyapunov spectrum of invariant subbundles of the Hodge bundle, Ergodic Theory Dynam. Systems, 34 (2014), 353-408.doi: 10.1017/etds.2012.148. |
[37] |
G. Forni, C. Matheus and A. Zorich, Zero Lyapunov exponents of the Hodge bundle, Comment. Math. Helv., 89 (2014), 489-535.doi: 10.4171/CMH/325. |
[38] |
R. Fox and R. Keshner, Concerning the transitive properties of geodesics on a rational polyhedron, Duke Math. J., 2 (1936), 147-150.doi: 10.1215/S0012-7094-36-00213-2. |
[39] |
I. Gol'dsheĭd and G. Margulis, Lyapunov exponents of a product of random matrices (Russian), Uspekhi Mat. Nauk, 44 (1989), 13-60; English translation in Russian Math. Surveys, 44 (1989), 11-71.doi: 10.1070/RM1989v044n05ABEH002214. |
[40] |
Y. Guivarch and A. Raugi, Products of random matrices: Convergence theorems, in Random Matrices and their Applications (Brunswick, ME, 1984), Contemp. Math., 50, Amer. Math. Soc., Providence, RI, 1986, 31-54.doi: 10.1090/conm/050/841080. |
[41] |
E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic, Duke Math. J., 103 (2000), 191-213.doi: 10.1215/S0012-7094-00-10321-3. |
[42] |
F. Herrlich and G. Schmithüsen, An extraordinary origami curve, Math. Nachr., 281 (2008), 219-237.doi: 10.1002/mana.200510597. |
[43] |
J. Hubbard, Teichmüller Theory and Applications to Geometry, Topology, and Dynamics, Vol. 1, Matrix Editions, Ithaca, NY, 2006. |
[44] |
P. Hubert and T. Schmidt, An introduction to Veech surfaces, in Handbook of Dynamical Systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, 501-526.doi: 10.1016/S1874-575X(06)80031-7. |
[45] |
P. Hubert and S. Lelièvre, Prime arithmetic Teichmüller discs in $\mathcalH(2)$, Israel J. Math., 151 (2006), 281-321.doi: 10.1007/BF02777365. |
[46] |
E. Kani, Hurwitz spaces of genus 2 covers of an elliptic curve, Collect. Math., 54 (2003), 1-51. |
[47] |
A. Katok, Interval exchange transformations and some special flows are not mixing, Israel J. Math., 35 (1980), 301-310.doi: 10.1007/BF02760655. |
[48] |
A. Katok, Invariant measures of flows on orientable surfaces, Dokl. Akad. Nauk SSSR, 211 (1973), 775-778. |
[49] |
A. Katok and A. Zemljakov, Topological transitivity of billiards in polygons, Mat. Zametki, 18 (1975), 291-300. |
[50] |
M. Kontsevich, Lyapunov exponents and Hodge theory, in The Mathematical Beauty of Physics (Saclay, 1996), Adv. Ser. Math. Phys., 24, World Sci. Publ., River Edge, NJ, 1997, 318-322. |
[51] |
M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.doi: 10.1007/s00222-003-0303-x. |
[52] |
E. Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials, Ann. Sci. Éc. Norm. Supér. (4), 41 (2008), 1-56. |
[53] |
E. Lanneau and D. Nguyen, Teichmüller curves generated by Weierstrass Prym eigenforms in genus three and genus four, arXiv:1111.2299, (2011), 1-51. |
[54] |
S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth-type interval exchange maps, J. Amer. Math. Soc., 18 (2005), 823-872.doi: 10.1090/S0894-0347-05-00490-X. |
[55] |
H. Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2), 115 (1982), 169-200.doi: 10.2307/1971341. |
[56] |
H. Masur, Logarithmic law for geodesics in moduli space, in Mapping Class Groups and Moduli Spaces of Riemann Surfaces (Göttingen, 1991/Seattle, WA, 1991), Contemp. Math., 150, Amer. Math. Soc., Providence, RI, 1993, 229-245.doi: 10.1090/conm/150/01293. |
[57] |
H. Masur, Ergodic theory of translation surfaces, in Handbook of Dynamical Systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, 527-547.doi: 10.1016/S1874-575X(06)80032-9. |
[58] |
H. Masur and S. Tabachnikov, Rational billiards and flat structures, in Handbook of Dynamical Systems. Vol. 1A, North-Holland, Amsterdam, 2002, 1015-1089.doi: 10.1016/S1874-575X(02)80015-7. |
[59] |
H. Masur and J. Smillie, Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms, Comment. Math. Helv., 68 (1993), 289-307.doi: 10.1007/BF02565820. |
[60] |
C. Matheus and G. Weitze-Schmithüsen, Explicit Teichmüller curves with complemetary series, arXiv:1109.0517v1, (2011), 1-40. |
[61] |
C. Matheus and J.-C. Yoccoz, The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis, J. Mod. Dyn., 4 (2010), 453-486.doi: 10.3934/jmd.2010.4.453. |
[62] |
C. Matheus, M. Möller and J.-C. Yoccoz, A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces, Invent. Math., (2014).doi: 10.1007/s00222-014-0565-5. |
[63] |
C. Matheus, D. Zmiaikou and J.-C. Yoccoz, The action on homology of the affine group and the automorphism group of regular origamis, in preparation. |
[64] |
M. Möller, Shimura and Teichmüller curves, J. Mod. Dyn., 5 (2011), 1-32.doi: 10.3934/jmd.2011.5.1. |
[65] |
M. Möller, Prym covers, theta functions and Kobayashi curves in Hilbert modular surfaces, arXiv:1111.2624, (2011), 1-26. |
[66] |
C. McMullen, Dynamics of $SL_2(\mathbbR)$ over moduli space in genus two, Ann. of Math. (2), 165 (2007), 397-456.doi: 10.4007/annals.2007.165.397. |
[67] |
C. McMullen, Teichmüller curves in genus two: Discriminant and spin, Math. Ann., 333 (2005), 87-130.doi: 10.1007/s00208-005-0666-y. |
[68] |
M. Ratner, The rate of mixing for geodesic and horocycle flows, Ergodic Theory Dynam. Systems, 7 (1987), 267-288.doi: 10.1017/S0143385700004004. |
[69] |
M. Ratner, On Raghunathan's measure conjecture, Ann. of Math. (2), 134 (1991), 545-607.doi: 10.2307/2944357. |
[70] |
G. Rauzy, Echanges d'intervalles et transformations induites, Acta Arith., 34 (1979), 315-328. |
[71] |
S. Schwartzman, Asymptotic cycles, Ann. of Math. (2), 66 (1957), 270-284.doi: 10.2307/1969999. |
[72] |
J. Smillie and B. Weiss, Characterizations of lattice surfaces, Invent. Math., 180 (2010), 535-557.doi: 10.1007/s00222-010-0236-0. |
[73] |
R. Treviño, On the ergodicity of flat surfaces of finite area, Geom. Funct. Anal., 24 (2014), 360-386.doi: 10.1007/s00039-014-0269-4. |
[74] |
W. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math.(2), 115 (1982), 201-242.doi: 10.2307/1971391. |
[75] |
W. Veech, The metric theory of interval exchange transformations. I. Generic spectral properties, Amer. J. Math., 106 (1984), 1331-1359.doi: 10.2307/2374396. |
[76] |
W. Veech, Teichmüller geodesic flow, Ann. of Math. (2), 124 (1986), 441-530.doi: 10.2307/2007091. |
[77] |
W. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583.doi: 10.1007/BF01388890. |
[78] |
W. Veech, Moduli spaces of quadratic differentials, J. Analyse Math., 55 (1990), 117-171.doi: 10.1007/BF02789200. |
[79] |
J.-C. Yoccoz, Interval exchange maps and translation surfaces, in Homogeneous Flows, Moduli Spaces and Arithmetic, Clay Math. Proc., 10, Amer. Math. Soc., Providence, RI, 2010, 1-69. |
[80] |
D. Zmiaikou, Origamis and Permutation Groups, Ph.D. thesis, University Paris-Sud 11, Orsay, 2011. Available from: http://www.zmiaikou.com/research. |
[81] |
A. Zorich, Flat surfaces, in Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006, 437-583. |
[82] |
A. Zorich, Asymptotic flag of an orientable measured foliation on a surface, in Geometric Study of Foliations (Tokyo, 1993), World Sci. Publ., River Edge, NJ, 1994, 479-498. |