- Previous Article
- JMD Home
- This Issue
-
Next Article
Rigidity of Julia sets for Hénon type maps
Center Lyapunov exponents in partially hyperbolic dynamics
1. | Department of Mathematical Sciences, Binghamton University, P. O. Box 6000, Binghamton, NY 13902, United States |
2. | Departamento de Matemática, ICMC-USP São Carlos, Caixa Postal 668, 13560-970 São Carlos-SP, Brazil |
References:
[1] |
F. Abdenur, C. Bonatti and S. Crovisier, Nonuniform hyperbolicity for $C^1$-generic diffeomorphisms, Israel J. Math., 183 (2011), 1-60.
doi: 10.1007/s11856-011-0041-5. |
[2] |
J. Alves, V. Araújo and B. Saussol, On the uniform hyperbolicity of some nonuniformly hyperbolic systems, Proc. Amer. Math. Soc., 131 (2003), 1303-1309.
doi: 10.1090/S0002-9939-02-06857-0. |
[3] |
J. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398.
doi: 10.1007/s002220000057. |
[4] |
A. Avila and M. Viana, Extremal Lyapunov exponents: An invariance principle and applications, Invent. Math., 181 (2010), 115-189.
doi: 10.1007/s00222-010-0243-1. |
[5] |
A. Avila, J. Santamaria and M. Viana, Cocycles over partially hyperbolic maps, preprint, 2008. Available from: http://www.preprint.impa.br. |
[6] |
A. Avila, M. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity I: Geodesic flows, preprint, 2011. |
[7] |
A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents, Ergodic Theory Dynam. Systems, 23 (2003), 1655-1670.
doi: 10.1017/S0143385702001773. |
[8] |
J. Bochi, Genericity of zero Lyapunov exponents, Ergodic Theory Dynam. Systems, 22 (2002), 1667-1696.
doi: 10.1017/S0143385702001165. |
[9] |
J. Bochi, Ch. Bonatti and L. J. Díaz, Robust vanishing of all Lyapunov exponents for iterated function systems, Mathematische Zeitschrift, 276 (2014), 469-503.
doi: 10.1007/s00209-013-1209-y. |
[10] |
C. Bonatti, L. J. Díaz and A. Gorodetski, Non-hyperbolic ergodic measures with large support, Nonlinearity, 23 (2010), 687-705.
doi: 10.1088/0951-7715/23/3/015. |
[11] |
C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective, Encyclopaedia of Mathematical Sciences, 102, Mathematical Physics, III, Springer-Verlag, Berlin, 2005. |
[12] |
D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups, J. Mod. Dyn., 2 (2008), 541-580.
doi: 10.3934/jmd.2008.2.541. |
[13] |
K. Burns and A. Wilkinson, Stable ergodicity of skew products, Ann. Sci. École Norm. Sup. (4), 32 (1999), 859-889.
doi: 10.1016/S0012-9593(00)87721-6. |
[14] |
C. Q. Cheng and Y. S. Sun, Existence of invariant tori in three-dimensional measure-preserving mappings,, Celestial Mech. Dynam. Astronom., 47 (): 275.
doi: 10.1007/BF00053456. |
[15] |
L. J. Díaz and A. Gorodetski, Non-hyperbolic ergodic measures for non-hyperbolic homoclinic classes, Ergodic Theory Dynam. Systems, 29 (2009), 1479-1513.
doi: 10.1017/S0143385708000849. |
[16] |
D. Dolgopyat, On dynamics of mostly contracting diffeomorphisms, Comm. Math. Phys., 213 (2000), 181-201.
doi: 10.1007/s002200000238. |
[17] |
D. Dolgopyat, On differentiability of SRB states for partially hyperbolic systems, Invent. Math., 155 (2004), 389-449.
doi: 10.1007/s00222-003-0324-5. |
[18] |
A. Gogolev, Smooth conjugacy in hyperbolic dynamics,, preprint., ().
|
[19] |
A. Gogolev, How typical are pathological foliations in partially hyperbolic dynamics: An example, Israel J. Math., 187 (2012), 493-507.
doi: 10.1007/s11856-011-0088-3. |
[20] |
A. S. Gorodetskiĭ, Regularity of central leaves of partially hyperbolic sets and applications, Izv. Math., 70 (2006), 1093-1116.
doi: 10.1070/IM2006v070n06ABEH002340. |
[21] |
A. S. Gorodetskiĭ and Yu. S. Il'yashenko, Some new robust properties of invariant sets and attractors of dynamical systems, Funktsional. Anal. i Prilozhen., 33 (1999), 16-30.
doi: 10.1007/BF02465190. |
[22] |
A. S. Gorodetskiĭ and Yu. S. Il'yashenko, Some properties of skew products over a horseshoe and a solenoid, Proc. Steklov Inst. Math., 231 (2000), 90-112. |
[23] |
A. S. Gorodetskiĭ, Yu. S. Il'yashenko, V. A. Kleptsyn and M. B. Nal'skiĭ, Nonremovability of zero Lyapunov exponents, (Russian) Funktsional. Anal. i Prilozhen., 39 (2005), 27-38, 95; translation in Funct. Anal. Appl., 39 (2005), 21-30.
doi: 10.1007/s10688-005-0014-8. |
[24] |
A. Hammerlindl, Leaf conjugacies on the torus, Ergodic Theory Dynam. Systems, 33 (2013), 896-933.
doi: 10.1017/etds.2012.171. |
[25] |
B. Hasselblatt and Ya. Pesin, Partially hyperbolic dynamical systems, in Handbook of Dynamical Systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, 1-55.
doi: 10.1016/S1874-575X(06)80026-3. |
[26] |
M. Hirayama and Ya. Pesin, Non-absolutely continuous foliations, Israel J. Math., 160 (2007), 173-187.
doi: 10.1007/s11856-007-0060-4. |
[27] |
M. Herman, Stabilité topologique des systèmes dynamiques conservatifs, preprint, (1990). |
[28] |
A. J. Homburg, Atomic disintegrations for partially hyperbolic diffeomorphisms, preprint, (2010). |
[29] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, With a supplementary chapter by Katok and L. Mendoza, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187. |
[30] |
V. Kleptsyn and M. Nal'skiĭ, Robustness of nonhyperbolic measures for $C^1$-diffeomorphisms, Funct. Anal. Appl., 41 (2007), 271-283.
doi: 10.1007/s10688-007-0025-8. |
[31] |
F. Ledrappier, Positivity of the exponent for stationary sequences of matrices, in Lyapunov Exponents (Bremen, 1984), Lect. Notes Math., 1186, Springer, Berlin, 1986, 56-73.
doi: 10.1007/BFb0076833. |
[32] |
C. Liang, W. Sun and J. Yang, Some results on perturbations to Lyapunov exponents, Discrete Contin. Dyn. Syst., 32 (2012), 4287-4305.
doi: 10.3934/dcds.2012.32.4287. |
[33] |
R. de la Llave, Invariants for smooth conjugacy of hyperbolic dynamical systems. II, Commun. Math. Phys., 109 (1987), 369-378.
doi: 10.1007/BF01206141. |
[34] |
J. Milnor, Fubini foiled: Katok's paradoxical example in measure theory, Math. Intelligencer, 19 (1997), 30-32.
doi: 10.1007/BF03024428. |
[35] |
J. M. Marco and R. Moriyón, Invariants for smooth conjugacy of hyperbolic dynamical systems. III, Comm. Math. Phys., 112 (1987), 317-333.
doi: 10.1007/BF01217815. |
[36] |
F. Micena and A. Tahzibi, Regularity of foliations and Lyapunov exponents for partially hyperbolic dynamics on 3-torus, Nonlinearity, 26 (2013), 1071-1082.
doi: 10.1088/0951-7715/26/4/1071. |
[37] |
M. Nal'skiĭ, Non-hyporbolic invariant measures on the maximal attractor (in Russian),, , ().
|
[38] |
Ya. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory, Russian Math. Surveys, 32 (1977), 55-114.
doi: 10.1070/RM1977v032n04ABEH001639. |
[39] |
Ya. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2004.
doi: 10.4171/003. |
[40] |
Ya. Pesin, Existence and genericity problems for dynamical systems with nonzero Lyapunov exponents, Regul. Chaotic Dyn., 12 (2007), 476-489.
doi: 10.1134/S1560354707050024. |
[41] |
G. Ponce and A. Tahzibi, Central Lyapunov exponent of partially hyperbolic diffeomorphisms of $\mathbbT^3$, Proc. Amer. Math. Soc., 142 (2014), 3193-3205.
doi: 10.1090/S0002-9939-2014-12063-6. |
[42] |
G. Ponce, A. Tahzibi and R. Varão, Minimal yet measurable foliations, J. Mod. Dyn., 8 (2014), 93-107.
doi: 10.3934/jmd.2014.8.93. |
[43] |
F. Rodriguez Hertz, J. Rodriguez Hertz and R. Ures, Partially Hyperbolic Dynamics, IMPA Mathematical Publications, 28th Brazilian Mathematics Colloquium, Rio de Janeiro, 2011. |
[44] |
D. Ruelle, Perturbation theory for Lyapunov exponents of a toral map: Extension of a result of Shub and Wilkinson, Israel J. Math., 134 (2003), 345-361.
doi: 10.1007/BF02787412. |
[45] |
D. Ruelle and A. Wilkinson, Absolutely singular dynamical foliations, Comm. Math. Phys., 219 (2001), 481-487.
doi: 10.1007/s002200100420. |
[46] |
R. Saghin and Zh. Xia, Geometric expansion, Lyapunov exponents and foliations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 689-704.
doi: 10.1016/j.anihpc.2008.07.001. |
[47] |
M. Shub and A. Wilkinson, Pathological foliations and removable zero exponents, Invent. Math., 139 (2000), 495-508.
doi: 10.1007/s002229900035. |
[48] |
K. Sigmund, On the connectedness of ergodic systems, Manuscripta Math., 22 (1977), 27-32.
doi: 10.1007/BF01182064. |
[49] |
R. Varão, Center foliation: Absolute continuity, disintegration and rigidity, Ergod. Th. Dynam. Syst., (2014), 20pp.
doi: 10.1017/etds.2014.53. |
[50] |
Z. Xia, Existence of invariant tori in volume-preserving diffeomorphisms, Ergod. Th. Dynam. Syst., 12 (1992), 621-631.
doi: 10.1017/S0143385700006969. |
[51] |
J.-C. Yoccoz, Travaux de Herman sur les tores invariants, Séminaire Bourbaki, Vol. 1991/92, Exp. No. 754, Astérisque, No. 206 (1992), 311-344. |
show all references
References:
[1] |
F. Abdenur, C. Bonatti and S. Crovisier, Nonuniform hyperbolicity for $C^1$-generic diffeomorphisms, Israel J. Math., 183 (2011), 1-60.
doi: 10.1007/s11856-011-0041-5. |
[2] |
J. Alves, V. Araújo and B. Saussol, On the uniform hyperbolicity of some nonuniformly hyperbolic systems, Proc. Amer. Math. Soc., 131 (2003), 1303-1309.
doi: 10.1090/S0002-9939-02-06857-0. |
[3] |
J. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398.
doi: 10.1007/s002220000057. |
[4] |
A. Avila and M. Viana, Extremal Lyapunov exponents: An invariance principle and applications, Invent. Math., 181 (2010), 115-189.
doi: 10.1007/s00222-010-0243-1. |
[5] |
A. Avila, J. Santamaria and M. Viana, Cocycles over partially hyperbolic maps, preprint, 2008. Available from: http://www.preprint.impa.br. |
[6] |
A. Avila, M. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity I: Geodesic flows, preprint, 2011. |
[7] |
A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents, Ergodic Theory Dynam. Systems, 23 (2003), 1655-1670.
doi: 10.1017/S0143385702001773. |
[8] |
J. Bochi, Genericity of zero Lyapunov exponents, Ergodic Theory Dynam. Systems, 22 (2002), 1667-1696.
doi: 10.1017/S0143385702001165. |
[9] |
J. Bochi, Ch. Bonatti and L. J. Díaz, Robust vanishing of all Lyapunov exponents for iterated function systems, Mathematische Zeitschrift, 276 (2014), 469-503.
doi: 10.1007/s00209-013-1209-y. |
[10] |
C. Bonatti, L. J. Díaz and A. Gorodetski, Non-hyperbolic ergodic measures with large support, Nonlinearity, 23 (2010), 687-705.
doi: 10.1088/0951-7715/23/3/015. |
[11] |
C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective, Encyclopaedia of Mathematical Sciences, 102, Mathematical Physics, III, Springer-Verlag, Berlin, 2005. |
[12] |
D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups, J. Mod. Dyn., 2 (2008), 541-580.
doi: 10.3934/jmd.2008.2.541. |
[13] |
K. Burns and A. Wilkinson, Stable ergodicity of skew products, Ann. Sci. École Norm. Sup. (4), 32 (1999), 859-889.
doi: 10.1016/S0012-9593(00)87721-6. |
[14] |
C. Q. Cheng and Y. S. Sun, Existence of invariant tori in three-dimensional measure-preserving mappings,, Celestial Mech. Dynam. Astronom., 47 (): 275.
doi: 10.1007/BF00053456. |
[15] |
L. J. Díaz and A. Gorodetski, Non-hyperbolic ergodic measures for non-hyperbolic homoclinic classes, Ergodic Theory Dynam. Systems, 29 (2009), 1479-1513.
doi: 10.1017/S0143385708000849. |
[16] |
D. Dolgopyat, On dynamics of mostly contracting diffeomorphisms, Comm. Math. Phys., 213 (2000), 181-201.
doi: 10.1007/s002200000238. |
[17] |
D. Dolgopyat, On differentiability of SRB states for partially hyperbolic systems, Invent. Math., 155 (2004), 389-449.
doi: 10.1007/s00222-003-0324-5. |
[18] |
A. Gogolev, Smooth conjugacy in hyperbolic dynamics,, preprint., ().
|
[19] |
A. Gogolev, How typical are pathological foliations in partially hyperbolic dynamics: An example, Israel J. Math., 187 (2012), 493-507.
doi: 10.1007/s11856-011-0088-3. |
[20] |
A. S. Gorodetskiĭ, Regularity of central leaves of partially hyperbolic sets and applications, Izv. Math., 70 (2006), 1093-1116.
doi: 10.1070/IM2006v070n06ABEH002340. |
[21] |
A. S. Gorodetskiĭ and Yu. S. Il'yashenko, Some new robust properties of invariant sets and attractors of dynamical systems, Funktsional. Anal. i Prilozhen., 33 (1999), 16-30.
doi: 10.1007/BF02465190. |
[22] |
A. S. Gorodetskiĭ and Yu. S. Il'yashenko, Some properties of skew products over a horseshoe and a solenoid, Proc. Steklov Inst. Math., 231 (2000), 90-112. |
[23] |
A. S. Gorodetskiĭ, Yu. S. Il'yashenko, V. A. Kleptsyn and M. B. Nal'skiĭ, Nonremovability of zero Lyapunov exponents, (Russian) Funktsional. Anal. i Prilozhen., 39 (2005), 27-38, 95; translation in Funct. Anal. Appl., 39 (2005), 21-30.
doi: 10.1007/s10688-005-0014-8. |
[24] |
A. Hammerlindl, Leaf conjugacies on the torus, Ergodic Theory Dynam. Systems, 33 (2013), 896-933.
doi: 10.1017/etds.2012.171. |
[25] |
B. Hasselblatt and Ya. Pesin, Partially hyperbolic dynamical systems, in Handbook of Dynamical Systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, 1-55.
doi: 10.1016/S1874-575X(06)80026-3. |
[26] |
M. Hirayama and Ya. Pesin, Non-absolutely continuous foliations, Israel J. Math., 160 (2007), 173-187.
doi: 10.1007/s11856-007-0060-4. |
[27] |
M. Herman, Stabilité topologique des systèmes dynamiques conservatifs, preprint, (1990). |
[28] |
A. J. Homburg, Atomic disintegrations for partially hyperbolic diffeomorphisms, preprint, (2010). |
[29] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, With a supplementary chapter by Katok and L. Mendoza, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187. |
[30] |
V. Kleptsyn and M. Nal'skiĭ, Robustness of nonhyperbolic measures for $C^1$-diffeomorphisms, Funct. Anal. Appl., 41 (2007), 271-283.
doi: 10.1007/s10688-007-0025-8. |
[31] |
F. Ledrappier, Positivity of the exponent for stationary sequences of matrices, in Lyapunov Exponents (Bremen, 1984), Lect. Notes Math., 1186, Springer, Berlin, 1986, 56-73.
doi: 10.1007/BFb0076833. |
[32] |
C. Liang, W. Sun and J. Yang, Some results on perturbations to Lyapunov exponents, Discrete Contin. Dyn. Syst., 32 (2012), 4287-4305.
doi: 10.3934/dcds.2012.32.4287. |
[33] |
R. de la Llave, Invariants for smooth conjugacy of hyperbolic dynamical systems. II, Commun. Math. Phys., 109 (1987), 369-378.
doi: 10.1007/BF01206141. |
[34] |
J. Milnor, Fubini foiled: Katok's paradoxical example in measure theory, Math. Intelligencer, 19 (1997), 30-32.
doi: 10.1007/BF03024428. |
[35] |
J. M. Marco and R. Moriyón, Invariants for smooth conjugacy of hyperbolic dynamical systems. III, Comm. Math. Phys., 112 (1987), 317-333.
doi: 10.1007/BF01217815. |
[36] |
F. Micena and A. Tahzibi, Regularity of foliations and Lyapunov exponents for partially hyperbolic dynamics on 3-torus, Nonlinearity, 26 (2013), 1071-1082.
doi: 10.1088/0951-7715/26/4/1071. |
[37] |
M. Nal'skiĭ, Non-hyporbolic invariant measures on the maximal attractor (in Russian),, , ().
|
[38] |
Ya. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory, Russian Math. Surveys, 32 (1977), 55-114.
doi: 10.1070/RM1977v032n04ABEH001639. |
[39] |
Ya. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2004.
doi: 10.4171/003. |
[40] |
Ya. Pesin, Existence and genericity problems for dynamical systems with nonzero Lyapunov exponents, Regul. Chaotic Dyn., 12 (2007), 476-489.
doi: 10.1134/S1560354707050024. |
[41] |
G. Ponce and A. Tahzibi, Central Lyapunov exponent of partially hyperbolic diffeomorphisms of $\mathbbT^3$, Proc. Amer. Math. Soc., 142 (2014), 3193-3205.
doi: 10.1090/S0002-9939-2014-12063-6. |
[42] |
G. Ponce, A. Tahzibi and R. Varão, Minimal yet measurable foliations, J. Mod. Dyn., 8 (2014), 93-107.
doi: 10.3934/jmd.2014.8.93. |
[43] |
F. Rodriguez Hertz, J. Rodriguez Hertz and R. Ures, Partially Hyperbolic Dynamics, IMPA Mathematical Publications, 28th Brazilian Mathematics Colloquium, Rio de Janeiro, 2011. |
[44] |
D. Ruelle, Perturbation theory for Lyapunov exponents of a toral map: Extension of a result of Shub and Wilkinson, Israel J. Math., 134 (2003), 345-361.
doi: 10.1007/BF02787412. |
[45] |
D. Ruelle and A. Wilkinson, Absolutely singular dynamical foliations, Comm. Math. Phys., 219 (2001), 481-487.
doi: 10.1007/s002200100420. |
[46] |
R. Saghin and Zh. Xia, Geometric expansion, Lyapunov exponents and foliations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 689-704.
doi: 10.1016/j.anihpc.2008.07.001. |
[47] |
M. Shub and A. Wilkinson, Pathological foliations and removable zero exponents, Invent. Math., 139 (2000), 495-508.
doi: 10.1007/s002229900035. |
[48] |
K. Sigmund, On the connectedness of ergodic systems, Manuscripta Math., 22 (1977), 27-32.
doi: 10.1007/BF01182064. |
[49] |
R. Varão, Center foliation: Absolute continuity, disintegration and rigidity, Ergod. Th. Dynam. Syst., (2014), 20pp.
doi: 10.1017/etds.2014.53. |
[50] |
Z. Xia, Existence of invariant tori in volume-preserving diffeomorphisms, Ergod. Th. Dynam. Syst., 12 (1992), 621-631.
doi: 10.1017/S0143385700006969. |
[51] |
J.-C. Yoccoz, Travaux de Herman sur les tores invariants, Séminaire Bourbaki, Vol. 1991/92, Exp. No. 754, Astérisque, No. 206 (1992), 311-344. |
[1] |
Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469 |
[2] |
Andrey Gogolev. Partially hyperbolic diffeomorphisms with compact center foliations. Journal of Modern Dynamics, 2011, 5 (4) : 747-769. doi: 10.3934/jmd.2011.5.747 |
[3] |
Keith Burns, Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Anna Talitskaya, Raúl Ures. Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 75-88. doi: 10.3934/dcds.2008.22.75 |
[4] |
Doris Bohnet. Codimension-1 partially hyperbolic diffeomorphisms with a uniformly compact center foliation. Journal of Modern Dynamics, 2013, 7 (4) : 565-604. doi: 10.3934/jmd.2013.7.565 |
[5] |
Carlos H. Vásquez. Stable ergodicity for partially hyperbolic attractors with positive central Lyapunov exponents. Journal of Modern Dynamics, 2009, 3 (2) : 233-251. doi: 10.3934/jmd.2009.3.233 |
[6] |
Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249 |
[7] |
David Burguet, Todd Fisher. Symbolic extensionsfor partially hyperbolic dynamical systems with 2-dimensional center bundle. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2253-2270. doi: 10.3934/dcds.2013.33.2253 |
[8] |
Jinhua Zhang. Partially hyperbolic diffeomorphisms with one-dimensional neutral center on 3-manifolds. Journal of Modern Dynamics, 2021, 17: 557-584. doi: 10.3934/jmd.2021019 |
[9] |
Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure and Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839 |
[10] |
Hongyu Cheng, Rafael de la Llave. Time dependent center manifold in PDEs. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6709-6745. doi: 10.3934/dcds.2020213 |
[11] |
Mauricio Poletti. Stably positive Lyapunov exponents for symplectic linear cocycles over partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5163-5188. doi: 10.3934/dcds.2018228 |
[12] |
Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873 |
[13] |
Stefano Bianchini, Alberto Bressan. A center manifold technique for tracing viscous waves. Communications on Pure and Applied Analysis, 2002, 1 (2) : 161-190. doi: 10.3934/cpaa.2002.1.161 |
[14] |
Pengfei Zhang. Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1435-1447. doi: 10.3934/dcds.2012.32.1435 |
[15] |
Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037 |
[16] |
Lorenzo J. Díaz, Todd Fisher. Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1419-1441. doi: 10.3934/dcds.2011.29.1419 |
[17] |
Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271 |
[18] |
Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Electronic Research Announcements, 2010, 17: 68-79. doi: 10.3934/era.2010.17.68 |
[19] |
A. Carati. Center manifold of unstable periodic orbits of helium atom: numerical evidence. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 97-104. doi: 10.3934/dcdsb.2003.3.97 |
[20] |
Janusz Mierczyński, Wenxian Shen. Formulas for generalized principal Lyapunov exponent for parabolic PDEs. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1189-1199. doi: 10.3934/dcdss.2016048 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]