January  2014, 8(1): 61-73. doi: 10.3934/jmd.2014.8.61

Loci in strata of meromorphic quadratic differentials with fully degenerate Lyapunov spectrum

1. 

I2M, Université d’Aix-Marseille, 39 rue F. Joliot- Curie, 13453 Marseille Cedex 20, France, France

Received  July 2013 Published  July 2014

We construct explicit closed $\mathrm{GL}(2; \mathbb{R})$-invariant loci in strata of meromorphic quadratic differentials of arbitrarily large dimension with fully degenerate Lyapunov spectrum. This answers a question of Forni-Matheus-Zorich.
Citation: Julien Grivaux, Pascal Hubert. Loci in strata of meromorphic quadratic differentials with fully degenerate Lyapunov spectrum. Journal of Modern Dynamics, 2014, 8 (1) : 61-73. doi: 10.3934/jmd.2014.8.61
References:
[1]

D. Aulicino, Affine invariant submanifolds with completely degenerate Kontsevich-Zorich spectrum,, preprint, (2013).   Google Scholar

[2]

I. I. Bouw and M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents,, Ann. of Math. (2), 172 (2010), 139.  doi: 10.4007/annals.2010.172.139.  Google Scholar

[3]

J. Chaika and A. Eskin, Every flat surface is Birkhoff and Osceledets generic in almost every direction,, preprint, (2013).   Google Scholar

[4]

A. Eskin, M. Kontsevich and A. Zorich, Lyapunov spectrum of square-tiled cyclic covers,, J. Mod. Dyn., 5 (2011), 319.  doi: 10.3934/jmd.2011.5.319.  Google Scholar

[5]

A. Eskin, M. Kontsevich and A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow,, Publications mathématiques de l'IHÉS, (2013), 1.  doi: 10.1007/s10240-013-0060-3.  Google Scholar

[6]

A. Eskin and M. Mirzakhani, Invariant and stationary measures for the SL(2,R) action on moduli space,, preprint, (2013).   Google Scholar

[7]

H. M. Farkas and I. Kra, Riemann Surfaces,, Second edition, (1992).  doi: 10.1007/978-1-4612-2034-3.  Google Scholar

[8]

G. Forni, C. Matheus and A. Zorich, Square-tiled cyclic covers,, J. Mod. Dyn., 5 (2011), 285.  doi: 10.3934/jmd.2011.5.285.  Google Scholar

[9]

G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus,, Ann. of Math. (2), 155 (2002), 1.  doi: 10.2307/3062150.  Google Scholar

[10]

G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle,, in Handbook of Dynamical Systems, (2006), 549.  doi: 10.1016/S1874-575X(06)80033-0.  Google Scholar

[11]

I. Kra, On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces,, Acta Math., 146 (1981), 231.  doi: 10.1007/BF02392465.  Google Scholar

[12]

M. Möller, Shimura and Teichmüller curves,, J. Mod. Dyn., 5 (2011), 1.  doi: 10.3934/jmd.2011.5.1.  Google Scholar

[13]

A. Wright, Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces,, J. Mod. Dyn., 6 (2012), 405.  doi: 10.3934/jmd.2012.6.405.  Google Scholar

[14]

A. Zorich, Deviation for interval-exchange transformations,, Ergodic Theory Dynam. Systems, 17 (1997), 1477.  doi: 10.1017/S0143385797086215.  Google Scholar

[15]

A. Zorich, How do the leaves of a closed $1$-form wind around a surface?,, in Pseudoperiodic Topology, (1999), 135.   Google Scholar

show all references

References:
[1]

D. Aulicino, Affine invariant submanifolds with completely degenerate Kontsevich-Zorich spectrum,, preprint, (2013).   Google Scholar

[2]

I. I. Bouw and M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents,, Ann. of Math. (2), 172 (2010), 139.  doi: 10.4007/annals.2010.172.139.  Google Scholar

[3]

J. Chaika and A. Eskin, Every flat surface is Birkhoff and Osceledets generic in almost every direction,, preprint, (2013).   Google Scholar

[4]

A. Eskin, M. Kontsevich and A. Zorich, Lyapunov spectrum of square-tiled cyclic covers,, J. Mod. Dyn., 5 (2011), 319.  doi: 10.3934/jmd.2011.5.319.  Google Scholar

[5]

A. Eskin, M. Kontsevich and A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow,, Publications mathématiques de l'IHÉS, (2013), 1.  doi: 10.1007/s10240-013-0060-3.  Google Scholar

[6]

A. Eskin and M. Mirzakhani, Invariant and stationary measures for the SL(2,R) action on moduli space,, preprint, (2013).   Google Scholar

[7]

H. M. Farkas and I. Kra, Riemann Surfaces,, Second edition, (1992).  doi: 10.1007/978-1-4612-2034-3.  Google Scholar

[8]

G. Forni, C. Matheus and A. Zorich, Square-tiled cyclic covers,, J. Mod. Dyn., 5 (2011), 285.  doi: 10.3934/jmd.2011.5.285.  Google Scholar

[9]

G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus,, Ann. of Math. (2), 155 (2002), 1.  doi: 10.2307/3062150.  Google Scholar

[10]

G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle,, in Handbook of Dynamical Systems, (2006), 549.  doi: 10.1016/S1874-575X(06)80033-0.  Google Scholar

[11]

I. Kra, On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces,, Acta Math., 146 (1981), 231.  doi: 10.1007/BF02392465.  Google Scholar

[12]

M. Möller, Shimura and Teichmüller curves,, J. Mod. Dyn., 5 (2011), 1.  doi: 10.3934/jmd.2011.5.1.  Google Scholar

[13]

A. Wright, Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces,, J. Mod. Dyn., 6 (2012), 405.  doi: 10.3934/jmd.2012.6.405.  Google Scholar

[14]

A. Zorich, Deviation for interval-exchange transformations,, Ergodic Theory Dynam. Systems, 17 (1997), 1477.  doi: 10.1017/S0143385797086215.  Google Scholar

[15]

A. Zorich, How do the leaves of a closed $1$-form wind around a surface?,, in Pseudoperiodic Topology, (1999), 135.   Google Scholar

[1]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[2]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[3]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[4]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[5]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[6]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[9]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[10]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[11]

João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321

[12]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021004

[13]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, 2021, 20 (2) : 915-931. doi: 10.3934/cpaa.2020297

[14]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[15]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[16]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[17]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[18]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[19]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[20]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]