January  2014, 8(1): 75-91. doi: 10.3934/jmd.2014.8.75

Topological entropy of minimal geodesics and volume growth on surfaces

1. 

Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany, Germany

2. 

Institut de Mathématiques et de Sciences Physiques (IMSP), Université d’Abomey-Calavi 01 BP 613 Porto-Novo, Benin

Received  August 2013 Revised  March 2014 Published  July 2014

Let $(M,g)$ be a compact Riemannian manifold of hyperbolic type, i.e $M$ is a manifold admitting another metric of strictly negative curvature. In this paper we study the geodesic flow restricted to the set of geodesics which are minimal on the universal covering. In particular for surfaces we show that the topological entropy of the minimal geodesics coincides with the volume entropy of $(M,g)$ generalizing work of Freire and Mañé.
Citation: Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75
References:
[1]

R. Bowen, Entropy-expansive maps,, Trans. Amer. Math. Soc., 164 (1972), 323.  doi: 10.1090/S0002-9947-1972-0285689-X.  Google Scholar

[2]

V. Bangert, Mather sets for twist maps and geodesics on tori,, in Dynamics Reported, (1988), 1.   Google Scholar

[3]

G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values,, Geometric and Functional Analysis, 8 (1998), 788.  doi: 10.1007/s000390050074.  Google Scholar

[4]

A. Freire and R. Mañé, On the entropy of the geodesic flow in manifolds without conjugate points,, Invent. Math., 69 (1982), 375.  doi: 10.1007/BF01389360.  Google Scholar

[5]

E. Glasmachers, Characterization of Riemannian Metrics on $T^2$ with and without Positive Topological Entropy,, Ph.D thesis, (2007).   Google Scholar

[6]

G. A. Hedlund, Geodesics on a two-dimensional Riemannian manifold with periodic coefficients,, Ann. of Math. (2), 33 (1932), 719.  doi: 10.2307/1968215.  Google Scholar

[7]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[8]

W. Klingenberg, Geodätischer Fluss auf Mannigfaltigkeiten vom hyperbolischen Typ,, Invent. Math., 14 (1971), 63.  doi: 10.1007/BF01418743.  Google Scholar

[9]

G. Knieper, Hyperbolic dynamics and riemannian geometry,, in Handbook of Dynamical Systems, (2002), 453.  doi: 10.1016/S1874-575X(02)80008-X.  Google Scholar

[10]

A. Manning, Topological entropy for geodesic flows,, Annals of Math. (2), 110 (1979), 567.  doi: 10.2307/1971239.  Google Scholar

[11]

M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one,, Trans. Amer. Math. Soc., 26 (1924), 25.  doi: 10.1090/S0002-9947-1924-1501263-9.  Google Scholar

[12]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

show all references

References:
[1]

R. Bowen, Entropy-expansive maps,, Trans. Amer. Math. Soc., 164 (1972), 323.  doi: 10.1090/S0002-9947-1972-0285689-X.  Google Scholar

[2]

V. Bangert, Mather sets for twist maps and geodesics on tori,, in Dynamics Reported, (1988), 1.   Google Scholar

[3]

G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values,, Geometric and Functional Analysis, 8 (1998), 788.  doi: 10.1007/s000390050074.  Google Scholar

[4]

A. Freire and R. Mañé, On the entropy of the geodesic flow in manifolds without conjugate points,, Invent. Math., 69 (1982), 375.  doi: 10.1007/BF01389360.  Google Scholar

[5]

E. Glasmachers, Characterization of Riemannian Metrics on $T^2$ with and without Positive Topological Entropy,, Ph.D thesis, (2007).   Google Scholar

[6]

G. A. Hedlund, Geodesics on a two-dimensional Riemannian manifold with periodic coefficients,, Ann. of Math. (2), 33 (1932), 719.  doi: 10.2307/1968215.  Google Scholar

[7]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[8]

W. Klingenberg, Geodätischer Fluss auf Mannigfaltigkeiten vom hyperbolischen Typ,, Invent. Math., 14 (1971), 63.  doi: 10.1007/BF01418743.  Google Scholar

[9]

G. Knieper, Hyperbolic dynamics and riemannian geometry,, in Handbook of Dynamical Systems, (2002), 453.  doi: 10.1016/S1874-575X(02)80008-X.  Google Scholar

[10]

A. Manning, Topological entropy for geodesic flows,, Annals of Math. (2), 110 (1979), 567.  doi: 10.2307/1971239.  Google Scholar

[11]

M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one,, Trans. Amer. Math. Soc., 26 (1924), 25.  doi: 10.1090/S0002-9947-1924-1501263-9.  Google Scholar

[12]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

[1]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[2]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[3]

Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021017

[4]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[5]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[6]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[7]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[8]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[9]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, 2021, 20 (2) : 511-532. doi: 10.3934/cpaa.2020278

[10]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[11]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[12]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[13]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[14]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[15]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[16]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[17]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[18]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[19]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[20]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (4)

[Back to Top]