January  2014, 8(1): 93-107. doi: 10.3934/jmd.2014.8.93

Minimal yet measurable foliations

1. 

Departamento de Matemática, ICMC-USP São Carlos- SP, Brazil, Brazil

2. 

Departamento de Matematica, ICMC-USP São Carlos, Caixa Postal 668, 13560-970 São Carlos-SP

Received  August 2013 Published  July 2014

In this paper we mainly address the problem of disintegration of Lebesgue measure along the central foliation of volume-preserving diffeomorphisms isotopic to hyperbolic automorphisms of 3-torus. We prove that atomic disintegration of the Lebesgue measure (ergodic case) along the central foliation has the peculiarity of being mono-atomic (one atom per leaf). This implies the measurability of the central foliation. As a corollary we provide open and nonempty subset of partially hyperbolic diffeomorphisms with minimal yet measurable central foliation.
Citation: Gabriel Ponce, Ali Tahzibi, Régis Varão. Minimal yet measurable foliations. Journal of Modern Dynamics, 2014, 8 (1) : 93-107. doi: 10.3934/jmd.2014.8.93
References:
[1]

A. Avila, M. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity I: Geodesic flows,, , (2011).   Google Scholar

[2]

A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents,, Ergodic Theory and Dynamical Systems, 23 (2003), 1655.  doi: 10.1017/S0143385702001773.  Google Scholar

[3]

L. Barreira and Y. Pesin, Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents,, Encyclopedia of Mathematics and its Applications, (2007).  doi: 10.1017/CBO9781107326026.  Google Scholar

[4]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds,, Topology, 44 (2005), 475.  doi: 10.1016/j.top.2004.10.009.  Google Scholar

[5]

M. Brin, D. Burago and D. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group,, in Modern Dynamical Systems and Applications, (2004), 307.   Google Scholar

[6]

M. Brin, D. Burago and D. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus,, J. Mod. Dyn., 3 (2009), 1.  doi: 10.3934/jmd.2009.3.1.  Google Scholar

[7]

M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory,, Graduate Texts in Mathematics, (2011).  doi: 10.1007/978-0-85729-021-2.  Google Scholar

[8]

J. Franks, Anosov diffeomorphisms,, in Global Analysis (Proc. Sympos. Pure Math., (1968), 61.   Google Scholar

[9]

A. Gogolev, How typical are pathological foliations in partially hyperbolic dynamics: An example,, Israel J. Math., 187 (2012), 493.  doi: 10.1007/s11856-011-0088-3.  Google Scholar

[10]

A. Hammerlindl, Leaf conjugacies on the torus,, to appear in Ergodic Theory and Dynamical Systems, (2009).   Google Scholar

[11]

A. Hammerlindl, Leaf Conjugacies on the Torus,, Ph.D. Thesis, (2009).   Google Scholar

[12]

A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in 3-dimensional nilmanifolds,, preprint, (2013).   Google Scholar

[13]

A. Hammerlindl and R. Ures, Ergodicity and partial hyperbolicity on the 3-torus,, Commun. Contemp. Math., (2013).  doi: 10.1142/S0219199713500387.  Google Scholar

[14]

M. Hirayama and Y. Pesin, Non-absolutely continuous foliations,, Israel J. Math., 160 (2007), 173.  doi: 10.1007/s11856-007-0060-4.  Google Scholar

[15]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Math., (1977).   Google Scholar

[16]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula,, Ann. of Math. (2), 122 (1985), 509.  doi: 10.2307/1971328.  Google Scholar

[17]

G. Ponce and A. Tahzibi, Central Lyapunov exponents of partially hyperbolic diffeomorphisms on $\mathbbT^3$,, to appear in Proceedings of AMS, (2013).   Google Scholar

[18]

V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure,, Uspehi Mat. Nauk, 22 (1967), 3.   Google Scholar

[19]

D. Ruelle and A. Wilkinson, Absolutely singular dynamical foliations,, Comm. Math. Phys., 219 (2001), 481.  doi: 10.1007/s002200100420.  Google Scholar

[20]

R. Saghin and Z. Xia, Geometric expansion, Lyapunov exponents and foliations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 689.  doi: 10.1016/j.anihpc.2008.07.001.  Google Scholar

[21]

M. Shub and A. Wilkinson, Pathological foliations and removable zero exponents,, Invent. Math., 139 (2000), 495.  doi: 10.1007/s002229900035.  Google Scholar

[22]

D. Sullivan, A counterexample to the periodic orbit conjecture,, Inst. Hautes Études Sci. Publ. Math., 46 (1976), 5.   Google Scholar

[23]

R. Ures, Intrinsic ergodicity of partially hyperbolic diffeomorphisms with a hyperbolic linear part,, Proc. Amer. Math. Soc., 140 (2012), 1973.  doi: 10.1090/S0002-9939-2011-11040-2.  Google Scholar

[24]

R. Varão, Center foliation: Absolute continuity, disintegration and rigidity,, to appear in Ergodic Theory and Dynamical Systems, (2014).   Google Scholar

[25]

Y. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory,, Russ. Math. Surv., 32 (1977), 55.  doi: 10.1070/RM1977v032n04ABEH001639.  Google Scholar

show all references

References:
[1]

A. Avila, M. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity I: Geodesic flows,, , (2011).   Google Scholar

[2]

A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents,, Ergodic Theory and Dynamical Systems, 23 (2003), 1655.  doi: 10.1017/S0143385702001773.  Google Scholar

[3]

L. Barreira and Y. Pesin, Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents,, Encyclopedia of Mathematics and its Applications, (2007).  doi: 10.1017/CBO9781107326026.  Google Scholar

[4]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds,, Topology, 44 (2005), 475.  doi: 10.1016/j.top.2004.10.009.  Google Scholar

[5]

M. Brin, D. Burago and D. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group,, in Modern Dynamical Systems and Applications, (2004), 307.   Google Scholar

[6]

M. Brin, D. Burago and D. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus,, J. Mod. Dyn., 3 (2009), 1.  doi: 10.3934/jmd.2009.3.1.  Google Scholar

[7]

M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory,, Graduate Texts in Mathematics, (2011).  doi: 10.1007/978-0-85729-021-2.  Google Scholar

[8]

J. Franks, Anosov diffeomorphisms,, in Global Analysis (Proc. Sympos. Pure Math., (1968), 61.   Google Scholar

[9]

A. Gogolev, How typical are pathological foliations in partially hyperbolic dynamics: An example,, Israel J. Math., 187 (2012), 493.  doi: 10.1007/s11856-011-0088-3.  Google Scholar

[10]

A. Hammerlindl, Leaf conjugacies on the torus,, to appear in Ergodic Theory and Dynamical Systems, (2009).   Google Scholar

[11]

A. Hammerlindl, Leaf Conjugacies on the Torus,, Ph.D. Thesis, (2009).   Google Scholar

[12]

A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in 3-dimensional nilmanifolds,, preprint, (2013).   Google Scholar

[13]

A. Hammerlindl and R. Ures, Ergodicity and partial hyperbolicity on the 3-torus,, Commun. Contemp. Math., (2013).  doi: 10.1142/S0219199713500387.  Google Scholar

[14]

M. Hirayama and Y. Pesin, Non-absolutely continuous foliations,, Israel J. Math., 160 (2007), 173.  doi: 10.1007/s11856-007-0060-4.  Google Scholar

[15]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Math., (1977).   Google Scholar

[16]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula,, Ann. of Math. (2), 122 (1985), 509.  doi: 10.2307/1971328.  Google Scholar

[17]

G. Ponce and A. Tahzibi, Central Lyapunov exponents of partially hyperbolic diffeomorphisms on $\mathbbT^3$,, to appear in Proceedings of AMS, (2013).   Google Scholar

[18]

V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure,, Uspehi Mat. Nauk, 22 (1967), 3.   Google Scholar

[19]

D. Ruelle and A. Wilkinson, Absolutely singular dynamical foliations,, Comm. Math. Phys., 219 (2001), 481.  doi: 10.1007/s002200100420.  Google Scholar

[20]

R. Saghin and Z. Xia, Geometric expansion, Lyapunov exponents and foliations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 689.  doi: 10.1016/j.anihpc.2008.07.001.  Google Scholar

[21]

M. Shub and A. Wilkinson, Pathological foliations and removable zero exponents,, Invent. Math., 139 (2000), 495.  doi: 10.1007/s002229900035.  Google Scholar

[22]

D. Sullivan, A counterexample to the periodic orbit conjecture,, Inst. Hautes Études Sci. Publ. Math., 46 (1976), 5.   Google Scholar

[23]

R. Ures, Intrinsic ergodicity of partially hyperbolic diffeomorphisms with a hyperbolic linear part,, Proc. Amer. Math. Soc., 140 (2012), 1973.  doi: 10.1090/S0002-9939-2011-11040-2.  Google Scholar

[24]

R. Varão, Center foliation: Absolute continuity, disintegration and rigidity,, to appear in Ergodic Theory and Dynamical Systems, (2014).   Google Scholar

[25]

Y. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory,, Russ. Math. Surv., 32 (1977), 55.  doi: 10.1070/RM1977v032n04ABEH001639.  Google Scholar

[1]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[2]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[3]

Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094

[4]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[5]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[6]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[7]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[8]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[9]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[10]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[11]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[12]

Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056

[13]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[14]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[15]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[16]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[17]

Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126

[18]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[19]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[20]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]