-
Previous Article
Pseudo-integrable billiards and arithmetic dynamics
- JMD Home
- This Issue
-
Next Article
Topological entropy of minimal geodesics and volume growth on surfaces
Minimal yet measurable foliations
1. | Departamento de Matemática, ICMC-USP São Carlos- SP, Brazil, Brazil |
2. | Departamento de Matematica, ICMC-USP São Carlos, Caixa Postal 668, 13560-970 São Carlos-SP |
References:
[1] |
A. Avila, M. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity I: Geodesic flows, arXiv:1110.2365v2, 2011. |
[2] |
A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents, Ergodic Theory and Dynamical Systems, 23 (2003), 1655-1670.
doi: 10.1017/S0143385702001773. |
[3] |
L. Barreira and Y. Pesin, Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and its Applications, 115, Cambridge University Press, Cambridge, 2007.
doi: 10.1017/CBO9781107326026. |
[4] |
C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds, Topology, 44 (2005), 475-508.
doi: 10.1016/j.top.2004.10.009. |
[5] |
M. Brin, D. Burago and D. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group, in Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004, 307-312. |
[6] |
M. Brin, D. Burago and D. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus, J. Mod. Dyn., 3 (2009), 1-11.
doi: 10.3934/jmd.2009.3.1. |
[7] |
M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, 259, Springer-Verlag London, Ltd., London, 2011.
doi: 10.1007/978-0-85729-021-2. |
[8] |
J. Franks, Anosov diffeomorphisms, in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, RI, 1970, 61-93. |
[9] |
A. Gogolev, How typical are pathological foliations in partially hyperbolic dynamics: An example, Israel J. Math., 187 (2012), 493-507.
doi: 10.1007/s11856-011-0088-3. |
[10] |
A. Hammerlindl, Leaf conjugacies on the torus, to appear in Ergodic Theory and Dynamical Systems, 2009. |
[11] |
A. Hammerlindl, Leaf Conjugacies on the Torus, Ph.D. Thesis, University of Toronto, Canada, 2009. |
[12] |
A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in 3-dimensional nilmanifolds, preprint, arXiv:1302.0543, 2013. |
[13] |
A. Hammerlindl and R. Ures, Ergodicity and partial hyperbolicity on the 3-torus, Commun. Contemp. Math., 2013.
doi: 10.1142/S0219199713500387. |
[14] |
M. Hirayama and Y. Pesin, Non-absolutely continuous foliations, Israel J. Math., 160 (2007), 173-187.
doi: 10.1007/s11856-007-0060-4. |
[15] |
M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin-New York, 1977. |
[16] |
F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula, Ann. of Math. (2), 122 (1985), 509-539.
doi: 10.2307/1971328. |
[17] |
G. Ponce and A. Tahzibi, Central Lyapunov exponents of partially hyperbolic diffeomorphisms on $\mathbbT^3$, to appear in Proceedings of AMS, 2013. |
[18] |
V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk, 22 (1967), 3-56. |
[19] |
D. Ruelle and A. Wilkinson, Absolutely singular dynamical foliations, Comm. Math. Phys., 219 (2001), 481-487.
doi: 10.1007/s002200100420. |
[20] |
R. Saghin and Z. Xia, Geometric expansion, Lyapunov exponents and foliations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 689-704.
doi: 10.1016/j.anihpc.2008.07.001. |
[21] |
M. Shub and A. Wilkinson, Pathological foliations and removable zero exponents, Invent. Math., 139 (2000), 495-508.
doi: 10.1007/s002229900035. |
[22] |
D. Sullivan, A counterexample to the periodic orbit conjecture, Inst. Hautes Études Sci. Publ. Math., 46 (1976), 5-14. |
[23] |
R. Ures, Intrinsic ergodicity of partially hyperbolic diffeomorphisms with a hyperbolic linear part, Proc. Amer. Math. Soc., 140 (2012), 1973-1985.
doi: 10.1090/S0002-9939-2011-11040-2. |
[24] |
R. Varão, Center foliation: Absolute continuity, disintegration and rigidity, to appear in Ergodic Theory and Dynamical Systems, 2014 |
[25] |
Y. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory, Russ. Math. Surv., 32 (1977), 55-114.
doi: 10.1070/RM1977v032n04ABEH001639. |
show all references
References:
[1] |
A. Avila, M. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity I: Geodesic flows, arXiv:1110.2365v2, 2011. |
[2] |
A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents, Ergodic Theory and Dynamical Systems, 23 (2003), 1655-1670.
doi: 10.1017/S0143385702001773. |
[3] |
L. Barreira and Y. Pesin, Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and its Applications, 115, Cambridge University Press, Cambridge, 2007.
doi: 10.1017/CBO9781107326026. |
[4] |
C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds, Topology, 44 (2005), 475-508.
doi: 10.1016/j.top.2004.10.009. |
[5] |
M. Brin, D. Burago and D. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group, in Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004, 307-312. |
[6] |
M. Brin, D. Burago and D. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus, J. Mod. Dyn., 3 (2009), 1-11.
doi: 10.3934/jmd.2009.3.1. |
[7] |
M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, 259, Springer-Verlag London, Ltd., London, 2011.
doi: 10.1007/978-0-85729-021-2. |
[8] |
J. Franks, Anosov diffeomorphisms, in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, RI, 1970, 61-93. |
[9] |
A. Gogolev, How typical are pathological foliations in partially hyperbolic dynamics: An example, Israel J. Math., 187 (2012), 493-507.
doi: 10.1007/s11856-011-0088-3. |
[10] |
A. Hammerlindl, Leaf conjugacies on the torus, to appear in Ergodic Theory and Dynamical Systems, 2009. |
[11] |
A. Hammerlindl, Leaf Conjugacies on the Torus, Ph.D. Thesis, University of Toronto, Canada, 2009. |
[12] |
A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in 3-dimensional nilmanifolds, preprint, arXiv:1302.0543, 2013. |
[13] |
A. Hammerlindl and R. Ures, Ergodicity and partial hyperbolicity on the 3-torus, Commun. Contemp. Math., 2013.
doi: 10.1142/S0219199713500387. |
[14] |
M. Hirayama and Y. Pesin, Non-absolutely continuous foliations, Israel J. Math., 160 (2007), 173-187.
doi: 10.1007/s11856-007-0060-4. |
[15] |
M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin-New York, 1977. |
[16] |
F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula, Ann. of Math. (2), 122 (1985), 509-539.
doi: 10.2307/1971328. |
[17] |
G. Ponce and A. Tahzibi, Central Lyapunov exponents of partially hyperbolic diffeomorphisms on $\mathbbT^3$, to appear in Proceedings of AMS, 2013. |
[18] |
V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk, 22 (1967), 3-56. |
[19] |
D. Ruelle and A. Wilkinson, Absolutely singular dynamical foliations, Comm. Math. Phys., 219 (2001), 481-487.
doi: 10.1007/s002200100420. |
[20] |
R. Saghin and Z. Xia, Geometric expansion, Lyapunov exponents and foliations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 689-704.
doi: 10.1016/j.anihpc.2008.07.001. |
[21] |
M. Shub and A. Wilkinson, Pathological foliations and removable zero exponents, Invent. Math., 139 (2000), 495-508.
doi: 10.1007/s002229900035. |
[22] |
D. Sullivan, A counterexample to the periodic orbit conjecture, Inst. Hautes Études Sci. Publ. Math., 46 (1976), 5-14. |
[23] |
R. Ures, Intrinsic ergodicity of partially hyperbolic diffeomorphisms with a hyperbolic linear part, Proc. Amer. Math. Soc., 140 (2012), 1973-1985.
doi: 10.1090/S0002-9939-2011-11040-2. |
[24] |
R. Varão, Center foliation: Absolute continuity, disintegration and rigidity, to appear in Ergodic Theory and Dynamical Systems, 2014 |
[25] |
Y. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory, Russ. Math. Surv., 32 (1977), 55-114.
doi: 10.1070/RM1977v032n04ABEH001639. |
[1] |
Rafael Potrie. Partial hyperbolicity and foliations in $\mathbb{T}^3$. Journal of Modern Dynamics, 2015, 9: 81-121. doi: 10.3934/jmd.2015.9.81 |
[2] |
Christian Bonatti, Nancy Guelman. Axiom A diffeomorphisms derived from Anosov flows. Journal of Modern Dynamics, 2010, 4 (1) : 1-63. doi: 10.3934/jmd.2010.4.1 |
[3] |
Virginie Bonnaillie-Noël, Corentin Léna. Spectral minimal partitions of a sector. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 27-53. doi: 10.3934/dcdsb.2014.19.27 |
[4] |
Bernard Helffer, Thomas Hoffmann-Ostenhof, Susanna Terracini. Nodal minimal partitions in dimension $3$. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 617-635. doi: 10.3934/dcds.2010.28.617 |
[5] |
Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901 |
[6] |
Fernando Alcalde Cuesta, Ana Rechtman. Minimal Følner foliations are amenable. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 685-707. doi: 10.3934/dcds.2011.31.685 |
[7] |
Boris Hasselblatt and Amie Wilkinson. Prevalence of non-Lipschitz Anosov foliations. Electronic Research Announcements, 1997, 3: 93-98. |
[8] |
Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91 |
[9] |
Edson de Faria, Pablo Guarino. Real bounds and Lyapunov exponents. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1957-1982. doi: 10.3934/dcds.2016.36.1957 |
[10] |
Zoltán Buczolich, Gabriella Keszthelyi. Isentropes and Lyapunov exponents. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 1989-2009. doi: 10.3934/dcds.2020102 |
[11] |
Andy Hammerlindl. Integrability and Lyapunov exponents. Journal of Modern Dynamics, 2011, 5 (1) : 107-122. doi: 10.3934/jmd.2011.5.107 |
[12] |
Sebastian J. Schreiber. Expansion rates and Lyapunov exponents. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 433-438. doi: 10.3934/dcds.1997.3.433 |
[13] |
Fumihiko Nakamura, Yushi Nakano, Hisayoshi Toyokawa. Lyapunov exponents for random maps. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022058 |
[14] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[15] |
Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187 |
[16] |
Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527 |
[17] |
Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227 |
[18] |
Dawei Yang, Shaobo Gan, Lan Wen. Minimal non-hyperbolicity and index-completeness. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1349-1366. doi: 10.3934/dcds.2009.25.1349 |
[19] |
Shrihari Sridharan, Atma Ram Tiwari. The dependence of Lyapunov exponents of polynomials on their coefficients. Journal of Computational Dynamics, 2019, 6 (1) : 95-109. doi: 10.3934/jcd.2019004 |
[20] |
Chao Liang, Wenxiang Sun, Jiagang Yang. Some results on perturbations of Lyapunov exponents. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4287-4305. doi: 10.3934/dcds.2012.32.4287 |
2021 Impact Factor: 0.641
Tools
Metrics
Other articles
by authors
[Back to Top]